These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6189550)

  • 1. Laminar origins of spinal projection neurons to the periaqueductal gray of the rat.
    Liu RP
    Brain Res; 1983 Mar; 264(1):118-22. PubMed ID: 6189550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal neuronal collaterals to the intralaminar thalamic nuclei and periaqueductal gray.
    Liu RP
    Brain Res; 1986 Feb; 365(1):145-50. PubMed ID: 3947980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential origin of brainstem serotoninergic projections to the midbrain periaqueductal gray and superior colliculus of the rat.
    Beitz AJ; Clements JR; Mullett MA; Ecklund LJ
    J Comp Neurol; 1986 Aug; 250(4):498-509. PubMed ID: 3760251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmental and laminar organization of the spinal neurons projecting to the periaqueductal gray (PAG) in the cat suggests the existence of at least five separate clusters of spino-PAG neurons.
    Mouton LJ; Holstege G
    J Comp Neurol; 2000 Dec; 428(3):389-410. PubMed ID: 11074442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study.
    Rizvi TA; Ennis M; Shipley MT
    J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H; Sumino R; Sessle BJ
    J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal cortical projections to the periaqueductal gray in the rat: a retrograde and orthograde horseradish peroxidase study.
    Hardy SG; Leichnetz GR
    Neurosci Lett; 1981 Apr; 23(1):13-7. PubMed ID: 6164964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The periaqueductal gray projections to the rat spinal trigeminal, raphe magnus, gigantocellular pars alpha and paragigantocellular nuclei arise from separate neurons.
    Beitz AJ; Mullett MA; Weiner LL
    Brain Res; 1983 Dec; 288(1-2):307-14. PubMed ID: 6198027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The location of brainstem neurons which project bilaterally to the spinal trigeminal nuclei as demonstrated by the double fluorescent retrograde tracer technique.
    Beitz AJ; Wells WE; Shepard RD
    Brain Res; 1983 Jan; 258(2):305-12. PubMed ID: 6186337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of A- versus C-nociceptive inputs into spinal-brainstem circuits.
    Parry DM; Macmillan FM; Koutsikou S; McMullan S; Lumb BM
    Neuroscience; 2008 Apr; 152(4):1076-85. PubMed ID: 18328632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticomotoneuronal connections in the rat: evidence from double-labeling of motoneurons and corticospinal axon arborizations.
    Liang FY; Moret V; Wiesendanger M; Rouiller EM
    J Comp Neurol; 1991 Sep; 311(3):356-66. PubMed ID: 1720143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat.
    Loewy AD; McKellar S
    Brain Res; 1981 Apr; 211(1):146-52. PubMed ID: 6164449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaterals of spinothalamic tract cells to the periaqueductal gray: a fluorescent double-labeling study in the rat.
    Harmann PA; Carlton SM; Willis WD
    Brain Res; 1988 Feb; 441(1-2):87-97. PubMed ID: 3359245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray.
    Vanderhorst VG; Mouton LJ; Blok BF; Holstege G
    J Comp Neurol; 1996 Dec; 376(3):361-85. PubMed ID: 8956105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase.
    Kuo DC; Nadelhaft I; Hisamitsu T; de Groat WC
    J Comp Neurol; 1983 May; 216(2):162-74. PubMed ID: 6863600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat.
    Bernard JF; Dallel R; Raboisson P; Villanueva L; Le Bars D
    J Comp Neurol; 1995 Mar; 353(4):480-505. PubMed ID: 7759612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent double-label study of lateral reticular nucleus projections to the spinal cord and periaqueductal gray in the rat.
    Lee HS; Mihailoff GA
    Anat Rec; 1999 Sep; 256(1):91-8. PubMed ID: 10456990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat.
    Spann BM; Grofova I
    J Comp Neurol; 1989 May; 283(1):13-27. PubMed ID: 2471715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in afferent pathways from the urinary bladder of the rat in response to partial urethral obstruction.
    Steers WD; Ciambotti J; Etzel B; Erdman S; de Groat WC
    J Comp Neurol; 1991 Aug; 310(3):401-10. PubMed ID: 1723990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.