These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6189699)

  • 21. Changes in short and long latency stretch reflexes prior to movement initiation.
    Sullivan SJ; Hayes KC
    Brain Res; 1987 May; 412(1):139-43. PubMed ID: 3607445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles.
    Zhang LQ; Rymer WZ
    J Neurophysiol; 2001 Sep; 86(3):1086-94. PubMed ID: 11535659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-latency stretch reflexes depend on the balance of activity in agonist and antagonist muscles during ballistic elbow movements.
    Villamar Z; Ludvig D; Perreault EJ
    J Neurophysiol; 2023 Jan; 129(1):7-16. PubMed ID: 36475940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Firing patterns of human flexor carpi radialis motor units during the stretch reflex.
    Calancie B; Bawa P
    J Neurophysiol; 1985 May; 53(5):1179-93. PubMed ID: 3998805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short- and long-latency reflex responses during different motor tasks in elbow flexor muscles.
    Nakazawa K; Yamamoto SI; Yano H
    Exp Brain Res; 1997 Aug; 116(1):20-8. PubMed ID: 9305811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in stretch reflex responses of elbow flexor muscles during shortening, lengthening and isometric contractions.
    Nakazawa K; Yano H; Satoh H; Fujisaki I
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):395-400. PubMed ID: 9562288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey.
    Cheney PD; Fetz EE
    J Physiol; 1984 Apr; 349():249-72. PubMed ID: 6737294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-latency stretch reflexes as co-ordinated functional responses in man.
    Gielen CC; Ramaekers L; van Zuylen EJ
    J Physiol; 1988 Dec; 407():275-92. PubMed ID: 3256617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Goal-dependent modulation of the long-latency stretch response at the shoulder, elbow, and wrist.
    Weiler J; Gribble PL; Pruszynski JA
    J Neurophysiol; 2015 Dec; 114(6):3242-54. PubMed ID: 26445871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Independent control of reflex and volitional EMG modulation during sinusoidal pursuit tracking in humans.
    Johnson MT; Kipnis AN; Lee MC; Ebner TJ
    Exp Brain Res; 1993; 96(2):347-62. PubMed ID: 8270027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stretch-induced electromyographic activity and torque in spastic elbow muscles. Differential modulation of reflex activity in passive and active motor tasks.
    Ibrahim IK; Berger W; Trippel M; Dietz V
    Brain; 1993 Aug; 116 ( Pt 4)():971-89. PubMed ID: 8353719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticipation of elbow joint perturbation shortens the onset time of the reflex EMG response in biceps brachii and triceps brachii.
    Koike T; Yamada N
    Neurosci Lett; 2007 Jan; 412(1):56-61. PubMed ID: 17194539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elbow impedance during goal-directed movements.
    Popescu F; Hidler JM; Rymer WZ
    Exp Brain Res; 2003 Sep; 152(1):17-28. PubMed ID: 12879184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of slow and fast elbow extensor EMG tonic activity by stretch reflexes in man.
    Bejaoui K; Le Bozec S; Maton B
    Eur J Appl Physiol Occup Physiol; 1987; 56(1):97-104. PubMed ID: 3830149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticipatory responses to a self-applied load in normal subjects and hemiparetic patients.
    Bennis N; Roby-Brami A; Dufossé M; Bussel B
    J Physiol Paris; 1996; 90(1):27-42. PubMed ID: 8803852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stretch reflexes of triceps surae in normal man.
    Berardelli A; Hallett M; Kaufman C; Fine E; Berenberg W; Simon SR
    J Neurol Neurosurg Psychiatry; 1982 Jun; 45(6):513-25. PubMed ID: 7119814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm.
    Joyce GC; Rack PM; Ross HF
    J Physiol; 1974 Jul; 240(2):351-74. PubMed ID: 4420490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.