These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6189990)

  • 41. Distribution and types of adrenoceptors in the guinea-pig ileum: the action of alpha- and beta-adrenoceptor blocking agents.
    Bauer V
    Br J Pharmacol; 1982 Aug; 76(4):569-78. PubMed ID: 6125224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A correlation between the effects of anti-mitotic drugs on microtubule assembly in vitro and the inhibition of axonal transport in noradrenergic neurones.
    Banks P; Till R
    J Physiol; 1975 Oct; 252(1):283-94. PubMed ID: 53281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prejunctional nicotinic receptors involved in facilitation of stimulation-evoked noradrenaline release from the vas deferens of the guinea-pig.
    Todorov L; Windisch K; Shersen H; Lajtha A; Papasova M; Vizi ES
    Br J Pharmacol; 1991 Jan; 102(1):186-90. PubMed ID: 2043921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on the translocation of noradrenaline-containing vesicles in post-ganglionic sympathetic neurones in vitro. Inhibition of movement by colchicine and vinblastine and evidence for the involvement of axonal microtubules.
    Banks P; Mayor D; Mitchell M; Tomlinson D
    J Physiol; 1971 Aug; 216(3):625-39. PubMed ID: 4105241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Secretory and radioligand binding studies on muscarinic receptors in bovine and feline chromaffin cells.
    Ballesta JJ; Borges R; García AG; Hidalgo MJ
    J Physiol; 1989 Nov; 418():411-26. PubMed ID: 2516125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High spatial resolution studies of muscarinic neuroeffector junctions in mouse isolated vas deferens.
    Cuprian-Beltechi AM; Solanki P; Teramoto N; Cunnane TC
    Neuroscience; 2009 Sep; 162(4):1366-76. PubMed ID: 19486927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [A new model of adrenergic nerve termination].
    Sánchez García P
    An R Acad Nac Med (Madr); 1985; 102(3):241-6. PubMed ID: 3002203
    [No Abstract]   [Full Text] [Related]  

  • 48. Mechanisms underlying presynaptic inhibition through alpha 2-adrenoceptors in guinea-pig submucosal neurones.
    Shen KZ; Surprenant A
    J Physiol; 1990 Dec; 431():609-28. PubMed ID: 1983122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beta-adrenoceptors modulate noradrenaline release from axonal sprouts in cultured rat superior cervical ganglia.
    Weinstock M; Thoa NB; Kopin IJ
    Eur J Pharmacol; 1978 Feb; 47(3):297-302. PubMed ID: 24542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Noradrenergic terminals are the primary source of α
    Devoto P; Flore G; Saba P; Scheggi S; Mulas G; Gambarana C; Spiga S; Gessa GL
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Mar; 90():97-103. PubMed ID: 30472147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hyperpolarizing 'alpha 2'-adrenoceptors in rat sympathetic ganglia.
    Brown DA; Caulfield MP
    Br J Pharmacol; 1979 Mar; 65(3):435-45. PubMed ID: 218668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Release of [3H]-noradrenaline from the sympathetic nerves to bovine mesenteric lymphatic vessels and its modification by alpha-agonists and antagonists.
    Allen JM; McCarron JG; McHale NG; Thornbury KD
    Br J Pharmacol; 1988 Jul; 94(3):823-33. PubMed ID: 2902893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in plasma dopamine beta-hydroxylase activity induced by stimulation of the complete sympathetic outflow in the pithed rat.
    García AG; Pelayo F; Sánchez-García P
    J Physiol; 1978 May; 278():287-96. PubMed ID: 671301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transmitter release modulated by alpha-adrenoceptor antagonists in the rabbit mesenteric artery: a comparison between noradrenaline outflow and electrical activity.
    Mishima S; Miyahara H; Suzuki H
    Br J Pharmacol; 1984 Oct; 83(2):537-47. PubMed ID: 6148987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic and ionic requirements for the intra-axonal transport of noradrenaline in the cat hypogastric nerve.
    Kirpekar SM; Prat JC; Wakade AR
    J Physiol; 1973 Jan; 228(1):173-9. PubMed ID: 4119622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Short- and long-latency muscarinic inhibition of noradrenaline release from rabbit atria induced by vagal stimulation.
    Habermeier-Muth A; Muscholl E
    J Physiol; 1988 Jul; 401():277-93. PubMed ID: 3171988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of neuronal uptake at alpha- and beta-adrenoceptor sites in subcutaneous adipose tissue.
    Belfrage E; Rosell S
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Jul; 294(1):9-15. PubMed ID: 1004631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Axonal transport of noradrenaline, protein and glycoprotein in cat hypogastric nerves in vitro under conditions of high extracellular glucose.
    Tomlinson DR
    Diabetologia; 1983 Mar; 24(3):172-8. PubMed ID: 6188644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of the activity of sympathetic preganglionic neurones and neurones activated by visceral afferents, by alpha-methylnoradrenaline and endogenous catecholamines.
    Kadzielawa K
    Neuropharmacology; 1983 Jan; 22(1):3-17. PubMed ID: 6302544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disappearance of noradrenaline from different parts of the rabbit external ear following superior cervical ganglionectomy.
    Evers-Von Bültzingslöwen I; Häggendal J
    J Neural Transm; 1983; 56(2-3):117-26. PubMed ID: 6190990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.