BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6190034)

  • 1. Colony morphology and heritability of anchorage-independent growth among spontaneously transformed Balb/3T3 cells.
    Rubin H; Romerdahl CA; Chu BM
    J Natl Cancer Inst; 1983 Jun; 70(6):1087-96. PubMed ID: 6190034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in capacity for anchorage-independent growth among agar-derived clones of spontaneously transformed BALB/3T3 cells.
    Romerdahl CA; Rubin H
    Cancer Res; 1984 Dec; 44(12 Pt 1):5570-6. PubMed ID: 6498818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniqueness of each spontaneous transformant from a clone of BALB/c 3T3 cells.
    Rubin H
    Cancer Res; 1988 May; 48(9):2512-8. PubMed ID: 3356012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive changes in spontaneously transformed Balb/3T3 cells during tumor formation and subsequent cultivation.
    Rubin H
    J Natl Cancer Inst; 1984 Feb; 72(2):375-81. PubMed ID: 6582323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term fluctuations and long-term trends in anchorage-independent multiplication among cryopreserved subpopulations of a spontaneously transformed Balb/3T3 clone.
    Rubin H; Chu B; Romerdahl C
    J Natl Cancer Inst; 1985 May; 74(5):1059-65. PubMed ID: 3858574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heritable variations in growth potential and morphology within a clone of Balb/3T3 cells and their relation to tumor formation.
    Rubin H; Chu BM; Arnstein P
    J Natl Cancer Inst; 1983 Aug; 71(2):365-75. PubMed ID: 6576194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in agar growth of transformed 3T3 cells after tumor formation in nude mice.
    Romerdahl CA; Rubin H
    J Natl Cancer Inst; 1985 Jun; 74(6):1247-53. PubMed ID: 3889458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor.
    Sapi E; Flick MB; Rodov S; Gilmore-Hebert M; Kelley M; Rockwell S; Kacinski BM
    Cancer Res; 1996 Dec; 56(24):5704-12. PubMed ID: 8971179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The characteristics of an anchorage-independent clonal agar assay for primary explanted bovine granulosa cells.
    Bertoncello I; Bradley TR; Chamley WA; Hodgson GS
    J Cell Physiol; 1982 Nov; 113(2):224-30. PubMed ID: 6294121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inheritance of acquired changes in growth capacity of spontaneously transformed BALB/3T3 cells propagated in mice and in culture.
    Rubin H; Hennessey TL; Sanui H; Arnstein P; Taylor DO; Chu BM
    Cancer Res; 1985 Jun; 45(6):2590-9. PubMed ID: 3986798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro cell density-dependent clonal growth of EGF-responsive murine neural progenitor cells under serum-free conditions.
    Hulspas R; Tiarks C; Reilly J; Hsieh CC; Recht L; Quesenberry PJ
    Exp Neurol; 1997 Nov; 148(1):147-56. PubMed ID: 9398457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of transforming growth factors in human breast cancer cells.
    Salomon DS; Zwiebel JA; Bano M; Losonczy I; Fehnel P; Kidwell WR
    Cancer Res; 1984 Sep; 44(9):4069-77. PubMed ID: 6331663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency variation and population drift in a newly transformed clone of BALB/3T3 cells.
    Rubin H; Arnstein P; Chu BM
    Cancer Res; 1984 Nov; 44(11):5242-8. PubMed ID: 6488183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microplate assay for quantitation of anchorage-independent growth of transformed cells.
    Fukazawa H; Mizuno S; Uehara Y
    Anal Biochem; 1995 Jun; 228(1):83-90. PubMed ID: 8572292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [clonal analysis of the independence of tumor cell multiplication from the substrate].
    Stavrovskaia AA; Stromskaia TP; Brodskaia RM; Vasil'ev IuM
    Genetika; 1982 Mar; 18(3):434-40. PubMed ID: 7200440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immortalization of normal human salivary gland cells with duct-, myoepithelial-, acinar-, or squamous phenotype by transfection with SV40 ori- mutant deoxyribonucleic acid.
    Azuma M; Tamatani T; Kasai Y; Sato M
    Lab Invest; 1993 Jul; 69(1):24-42. PubMed ID: 7687310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clonal growth of Entamoeba in agar: some applications of this technique to the study of their cell biology.
    Gillin FD; Diamond LS
    Arch Invest Med (Mex); 1978; 9 Suppl 1():237-46. PubMed ID: 211957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of growth morphology and clonability with malignancy of WEHI-7 T-cell lymphoma sublines.
    Gjedde SB
    Cancer Res; 1983 Nov; 43(11):5360-4. PubMed ID: 6604575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colony formation in agar by adult bone marrow multipotential hemopoietic cells.
    Johnson GR
    J Cell Physiol; 1980 Jun; 103(3):371-83. PubMed ID: 7400223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal mouse serum contains peptides which induce fibroblasts to grow in soft agar.
    Rapp UR; Gunnell M; Marquardt H
    J Cell Biochem; 1983; 21(1):29-38. PubMed ID: 6603462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.