BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6190322)

  • 1. Histochemistry and functional significance of putative neocortical transmitter substances: a review.
    Mihály A
    Z Mikrosk Anat Forsch; 1982; 96(6):916-36. PubMed ID: 6190322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals.
    Bevan MD; Francis CM; Bolam JP
    J Comp Neurol; 1995 Oct; 361(3):491-511. PubMed ID: 8550895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotransmitters in the cerebral cortex.
    Jones EG
    J Neurosurg; 1986 Aug; 65(2):135-53. PubMed ID: 2873211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
    Hill EL; Gallopin T; Férézou I; Cauli B; Rossier J; Schweitzer P; Lambolez B
    J Neurophysiol; 2007 Apr; 97(4):2580-9. PubMed ID: 17267760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex.
    Tsumoto T
    Neurosci Res; 1990 Nov; 9(2):79-102. PubMed ID: 1980528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotransmitters in the human and nonhuman primate basal ganglia.
    Haber SN
    Hum Neurobiol; 1986; 5(3):159-68. PubMed ID: 2876974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic basal forebrain neurons that express receptor for neurokinin B and send axons to the cerebral cortex.
    Furuta T; Koyano K; Tomioka R; Yanagawa Y; Kaneko T
    J Comp Neurol; 2004 May; 473(1):43-58. PubMed ID: 15067717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmitter systems in the primate dentate gyrus.
    Amaral DG; Campbell MJ
    Hum Neurobiol; 1986; 5(3):169-80. PubMed ID: 2876975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Patas monkey, glutamic acid decarboxylase-67 and reelin mRNA coexpression varies in a manner dependent on layers and cortical areas.
    Rodriguez MA; Caruncho HJ; Costa E; Pesold C; Liu WS; Guidotti A
    J Comp Neurol; 2002 Sep; 451(3):279-88. PubMed ID: 12210139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acids as central synaptic transmitters or modulators in mammalian thermoregulation.
    Bligh J
    Fed Proc; 1981 Nov; 40(13):2746-9. PubMed ID: 6117484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of cellular excitability in neocortex: muscarinic receptor and second messenger-mediated actions of acetylcholine.
    Cox CL; Metherate R; Ashe JH
    Synapse; 1994 Feb; 16(2):123-36. PubMed ID: 7910986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation.
    Kocharyan A; Fernandes P; Tong XK; Vaucher E; Hamel E
    J Cereb Blood Flow Metab; 2008 Feb; 28(2):221-31. PubMed ID: 17895909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of transmitter phenotypes in rat cerebral cortex.
    Götz M; Bolz J
    Eur J Neurosci; 1994 Jan; 6(1):18-32. PubMed ID: 7907521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Putative transmitter systems of mammalian sympathetic preganglionic neurons.
    Dun NJ; Karczmar AG; Wu SY; Shen E
    Acta Neurobiol Exp (Wars); 1993; 53(1):53-63. PubMed ID: 8100378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redistribution of CB1 cannabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: a comparison between the gray mouse lemur (Microcebus murinus, primates) and rat.
    Harkany T; Dobszay MB; Cayetanot F; Härtig W; Siegemund T; Aujard F; Mackie K
    Neuroscience; 2005; 135(2):595-609. PubMed ID: 16129564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat.
    Gritti I; Mainville L; Mancia M; Jones BE
    J Comp Neurol; 1997 Jun; 383(2):163-77. PubMed ID: 9182846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids as transmitters of synaptic excitation in neocortical sensory processes.
    Hicks TP; Kaneko T; Metherate R; Oka JI; Stark CA
    Can J Physiol Pharmacol; 1991 Jul; 69(7):1099-114. PubMed ID: 1683264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastrointestinal neurotransmitters.
    McConalogue K; Furness JB
    Baillieres Clin Endocrinol Metab; 1994 Jan; 8(1):51-76. PubMed ID: 7907863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: a review.
    Micheva KD; Beaulieu C
    Can J Physiol Pharmacol; 1997 May; 75(5):470-8. PubMed ID: 9250380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex.
    Reiner A
    Brain Behav Evol; 1991; 38(2-3):53-91. PubMed ID: 1683805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.