BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 6192809)

  • 1. Effect of micromolar concentrations of manganese ions on calcium-ion cycling in rat liver mitochondria.
    Hughes BP; Exton JH
    Biochem J; 1983 Jun; 212(3):773-82. PubMed ID: 6192809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese stimulates calcium flux through the mitochondrial uniporter.
    Allshire A; Bernardi P; Saris NE
    Biochim Biophys Acta; 1985 May; 807(2):202-9. PubMed ID: 3978095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes in the effect of Cd2+ on the respiration of isolated rat liver mitochondria after their preincubation with Ca2+, Sr2+, Ba2+, Mn2+ and ruthenium red].
    Korotkov SM; Skul'skiĭ IA
    Tsitologiia; 1996; 38(4-5):500-9. PubMed ID: 8966752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S; Hughes BP; Barritt GJ
    Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a 45Ca exchange technique in the presence of magnesium, phosphate, and ATPase at 37 degrees C.
    Barritt GJ
    J Membr Biol; 1981; 62(1-2):53-63. PubMed ID: 6168763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the state of calcium ions in isolated rat liver mitochondria IV. Prevention of phosphate-induced mitochondrial destruction by ruthenium red-insensitive calcium release.
    Blaich G; Krell H; Pfaff E
    Biol Chem Hoppe Seyler; 1985 May; 366(5):515-9. PubMed ID: 2408639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the state of calcium ions in isolated rat liver mitochondria. II. Effects of phosphate and pH on Ca2+-induced Ca2+ release.
    Blaich G; Krell H; Täfler M; Pfaff E
    Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):73-82. PubMed ID: 6201430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane.
    Mironova GD; Saris NE; Belosludtseva NV; Agafonov AV; Elantsev AB; Belosludtsev KN
    Biochim Biophys Acta; 2015 Feb; 1848(2):488-95. PubMed ID: 25450352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of ruthenium red-induced Ca2+ efflux from liver mitochondria by the antibiotic X-537A.
    Pereira da Silva L; Bernardes CF; Vercesi AE
    Biochem Biophys Res Commun; 1984 Oct; 124(1):80-6. PubMed ID: 6208904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibitory effect of Mn2+ on the ATP-dependent Ca2+ pump in rat brain synaptic plasma membrane vesicles.
    Low W; Brawarnick N; Rahamimoff H
    Biochem Pharmacol; 1991 Sep; 42(8):1537-43. PubMed ID: 1656989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport.
    Lenzen S; Hickethier R; Panten U
    J Biol Chem; 1986 Dec; 261(35):16478-83. PubMed ID: 3782131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium.
    Halestrap AP; Quinlan PT; Whipps DE; Armston AE
    Biochem J; 1986 Jun; 236(3):779-87. PubMed ID: 2431681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium.
    Wingrove DE; Gunter TE
    J Biol Chem; 1986 Nov; 261(32):15166-71. PubMed ID: 2429966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for more than one Ca2+ transport mechanism in mitochondria.
    Puskin JS; Gunter TE; Gunter KK; Russell PR
    Biochemistry; 1976 Aug; 15(17):3834-42. PubMed ID: 8094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.
    Rugolo M; Siliprandi D; Siliprandi N; Toninello A
    Biochem J; 1981 Dec; 200(3):481-6. PubMed ID: 6177312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria.
    Akerman KE
    Arch Biochem Biophys; 1978 Aug; 189(2):256-62. PubMed ID: 30403
    [No Abstract]   [Full Text] [Related]  

  • 17. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP.
    Bernardes CF; Pereira da Silva L; Vercesi AE
    Biochim Biophys Acta; 1986 Jun; 850(1):41-8. PubMed ID: 2423127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Pore' formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria.
    Schlegel J; Schweizer M; Richter C
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):65-9. PubMed ID: 1379041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered ATP-dependent mitochondrial Ca2+ uptake in cold ischemia is attenuated by ruthenium red.
    Belous A; Knox C; Nicoud IB; Pierce J; Anderson C; Pinson CW; Chari RS
    J Surg Res; 2003 May; 111(2):284-9. PubMed ID: 12850475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria.
    Fiskum G; Cockrell RS
    Arch Biochem Biophys; 1985 Aug; 240(2):723-33. PubMed ID: 2411223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.