These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 6193280)

  • 1. Molecular dynamics of native protein. I. Computer simulation of trajectories.
    Levitt M
    J Mol Biol; 1983 Aug; 168(3):595-617. PubMed ID: 6193280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics of native protein. II. Analysis and nature of motion.
    Levitt M
    J Mol Biol; 1983 Aug; 168(3):621-57. PubMed ID: 6193282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein folding by restrained energy minimization and molecular dynamics.
    Levitt M
    J Mol Biol; 1983 Nov; 170(3):723-64. PubMed ID: 6195346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of bovine pancreatic trypsin inhibitor.
    Ooi T; Nishikawa K; Oobatake M; Scheraga HA
    Biochim Biophys Acta; 1978 Oct; 536(2):390-405. PubMed ID: 568492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.
    Levitt M; Sander C; Stern PS
    J Mol Biol; 1985 Feb; 181(3):423-47. PubMed ID: 2580101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of the dynamics of hydrated protein crystals and its comparison with x-ray data.
    van Gunsteren WF; Berendsen HJ; Hermans J; Hol WG; Postma JP
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4315-9. PubMed ID: 6576339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of NMR chemical shifts to analyse the MD trajectories: simulation of bovine pancreatic trypsin inhibitor dynamics in water as a test case for solvent influences.
    Busetta B; Picard P; Precigoux G
    J Pept Sci; 2003 Jul; 9(7):450-60. PubMed ID: 12916642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical properties of bovine pancreatic trypsin inhibitor from a molecular dynamics simulation at 5000 atm.
    Brunne RM; van Gunsteren WF
    FEBS Lett; 1993 Jun; 323(3):215-7. PubMed ID: 7684708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding.
    Bass MB; Hopkins DF; Jaquysh WA; Ornstein RL
    Proteins; 1992 Mar; 12(3):266-77. PubMed ID: 1372979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water.
    Berndt KD; Güntert P; Wüthrich K
    Proteins; 1996 Mar; 24(3):304-13. PubMed ID: 8778777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly destabilizing mutation, G37A, of the bovine pancreatic trypsin inhibitor retains the average native conformation but greatly increases local flexibility.
    Battiste JL; Li R; Woodward C
    Biochemistry; 2002 Feb; 41(7):2237-45. PubMed ID: 11841215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor.
    Ripoll DR; Piela L; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):188-98. PubMed ID: 1715563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of protein conformation by the build-up procedure. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data.
    Vásquez M; Scheraga HA
    J Biomol Struct Dyn; 1988 Feb; 5(4):705-55. PubMed ID: 2482758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of folded proteins.
    McCammon JA; Gelin BR; Karplus M
    Nature; 1977 Jun; 267(5612):585-90. PubMed ID: 301613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor.
    Vila J; Williams RL; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):199-218. PubMed ID: 1715564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation as a tool for tracing the conformational differences between proteins in solution and in the crystalline state.
    van Gunsteren WF; Berendsen HJ
    J Mol Biol; 1984 Jul; 176(4):559-64. PubMed ID: 6205158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The solution structure of bovine pancreatic trypsin inhibitor at high pressure.
    Williamson MP; Akasaka K; Refaee M
    Protein Sci; 2003 Sep; 12(9):1971-9. PubMed ID: 12930996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of cross-links to protein stability: a normal mode analysis of the configurational entropy of the native state.
    Tidor B; Karplus M
    Proteins; 1993 Jan; 15(1):71-9. PubMed ID: 7680808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.