These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 6193979)

  • 1. A new differentiated cell line (Dif 5) derived by retinoic acid treatment of F9 teratocarcinoma cells capable of extracellular matrix production and growth in the absence of serum.
    Nagarajan L; Jetten AM; Anderson WB
    Exp Cell Res; 1983 Sep; 147(2):315-27. PubMed ID: 6193979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP.
    Strickland S; Smith KK; Marotti KR
    Cell; 1980 Sep; 21(2):347-55. PubMed ID: 6250719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic adenosine monophosphate-mediated induction of F9 teratocarcinoma differentiation in the absence of retinoic acid.
    Goldstein B; Rogelj S; Siegel S; Farmer SR; Niles RM
    J Cell Physiol; 1990 May; 143(2):205-12. PubMed ID: 1692026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A teratocarcinoma-derived endoderm stem cell line (1H5) that can differentiate into extra-embryonic endoderm cell types.
    Adamson ED; Strickland S; Tu M; Kahan B
    Differentiation; 1985; 29(1):68-76. PubMed ID: 2991056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic acid modulation of transmembrane signaling. Analysis in F9 teratocarcinoma cells.
    Galvin-Parton PA; Watkins DC; Malbon CC
    J Biol Chem; 1990 Oct; 265(29):17771-9. PubMed ID: 2170395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The location and expression of fibroblast growth factor (FGF) in F9 visceral and parietal embryonic cells after retinoic acid-induced differentiation.
    Braunhut SJ; D'Amore PA; Gudas LJ
    Differentiation; 1992 Aug; 50(3):141-52. PubMed ID: 1426701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of insulin-like growth factor-II (MSA) by endoderm-like cells derived from embryonal carcinoma cells: possible mediator of embryonic cell growth.
    Nagarajan L; Anderson WB; Nissley SP; Rechler MM; Jetten AM
    J Cell Physiol; 1985 Aug; 124(2):199-206. PubMed ID: 4044654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonal carcinoma cells differentiate into parietal endoderm via an intermediate stage corresponding to primitive endoderm.
    Damjanov I; Zhu ZM; Andrews PW; Fenderson BA
    In Vivo; 1994; 8(6):967-73. PubMed ID: 7772748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of extracellular matrix gradients on the haptotactic migration of F9 embryocarcinoma-derived primitive and parietal endoderm-like cells.
    Carnegie JA
    Biol Reprod; 1994 Feb; 50(2):413-20. PubMed ID: 8142558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression in visceral endoderm: a comparison of mutant and wild-type F9 embryonal carcinoma cell differentiation.
    Rogers MB; Watkins SC; Gudas LJ
    J Cell Biol; 1990 May; 110(5):1767-77. PubMed ID: 1692330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyrate inhibits the retinoic acid-induced differentiation of F9 teratocarcinoma stem cells.
    Levine RA; Campisi J; Wang SY; Gudas LJ
    Dev Biol; 1984 Oct; 105(2):443-50. PubMed ID: 6090244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of correlation between loss of anchorage-independent growth and levels of transformation-specific p53 protein in retinoic acid-treated F9 embryonal carcinoma cells.
    Rodrigues M; Balicki D; Newrock KM; Mukherjee BB
    Exp Cell Res; 1985 Jan; 156(1):22-30. PubMed ID: 2981174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the existence of an early common biochemical pathway in the differentiation of F9 cells into visceral or parietal endoderm: modulation by cyclic AMP.
    Grover A; Adamson ED
    Dev Biol; 1986 Apr; 114(2):492-503. PubMed ID: 2420663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoic acid induces parietal endoderm but not primitive endoderm and visceral endoderm differentiation in F9 teratocarcinoma stem cells with a targeted deletion of the Rex-1 (Zfp-42) gene.
    Thompson JR; Gudas LJ
    Mol Cell Endocrinol; 2002 Sep; 195(1-2):119-33. PubMed ID: 12354678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adhesion-defective variant of F9 embryonal carcinoma cells fails to differentiate into visceral endoderm.
    Grover A; Rosentraus MJ; Sterman B; Snook ME; Adamson ED
    Dev Biol; 1987 Mar; 120(1):1-11. PubMed ID: 2434373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditions affecting the differentiation of F9 teratocarcinoma cells: potentiation of response by cyclic AMP.
    Grover A; Adamson ED
    In Vitro Cell Dev Biol; 1986 May; 22(5):280-4. PubMed ID: 2423499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The induction of differentiation in teratocarcinoma stem cells by retinoic acid.
    Strickland S; Mahdavi V
    Cell; 1978 Oct; 15(2):393-403. PubMed ID: 214238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the cytoskeleton-extracellular matrix linkage promotes the accumulation of plasminogen activators in F9 derived parietal endoderm.
    Snyder RW; Lenburg ME; Seebaum AT; Grabel LB
    Differentiation; 1992 Aug; 50(3):153-62. PubMed ID: 1330791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defective post-translational modification of collagen IV in a mutant F9 teratocarcinoma cell line is associated with delayed differentiation and growth arrest in response to retinoic acid.
    Wang SY; Roguska MA; Gudas LJ
    J Biol Chem; 1989 Sep; 264(26):15556-64. PubMed ID: 2549067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid-induced transition from protein kinase C beta to protein kinase C alpha in differentiated F9 cells: correlation with altered regulation of proto-oncogene expression by phorbol esters.
    Khuri FR; Cho Y; Talmage DA
    Cell Growth Differ; 1996 May; 7(5):595-602. PubMed ID: 8732669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.