These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6194282)

  • 1. Bilayer membrane formation in the chenodeoxycholate, phosphatidylcholine and cholesterol solution.
    Igimi H; Murata K
    J Pharmacobiodyn; 1983 Apr; 6(4):261-6. PubMed ID: 6194282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The developmental process from micelle to liquid crystal in the ursodeoxycholate, phosphatidylcholine and cholesterol solution.
    Igimi H; Nishijima S; Shimura H
    J Pharmacobiodyn; 1983 Apr; 6(4):267-71. PubMed ID: 6620114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol.
    Copeland BR; McConnel HM
    Biochim Biophys Acta; 1980 Jun; 599(1):95-109. PubMed ID: 7397161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface ripples cause the large fluid spaces between gel phase bilayers containing small amounts of cholesterol.
    Simon SA; McIntosh TJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):69-74. PubMed ID: 2025636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ripple phase of phosphatidylcholines: effect of chain length and cholesterol.
    Hicks A; Dinda M; Singer MA
    Biochim Biophys Acta; 1987 Sep; 903(1):177-85. PubMed ID: 3651451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol attenuates and prevents bilayer damage and breakdown in lipoperoxidized model membranes. A spin labeling EPR study.
    Megli FM; Conte E; Ishikawa T
    Biochim Biophys Acta; 2011 Sep; 1808(9):2267-74. PubMed ID: 21600189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles.
    Dufourcq J; Faucon JF; Fourche G; Dasseux JL; Le Maire M; Gulik-Krzywicki T
    Biochim Biophys Acta; 1986 Jul; 859(1):33-48. PubMed ID: 3718985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-Muricholic acid; potentiometric and cholesterol-dissolving properties.
    Montet JC; Parquet M; Sacquet E; Montet AM; Infante R; Amic J
    Biochim Biophys Acta; 1987 Mar; 918(1):1-10. PubMed ID: 3828364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of n-alkanes on the morphology of lipid bilayers. A freeze-fracture and negative stain analysis.
    McIntosh TJ; Costello MJ
    Biochim Biophys Acta; 1981 Jul; 645(2):318-26. PubMed ID: 6168283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies.
    Van Echteld CJ; De Kruijff B; Mandersloot JG; De Gier J
    Biochim Biophys Acta; 1981 Dec; 649(2):211-20. PubMed ID: 7317392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions.
    Hui SW; Mason JT; Huang C
    Biochemistry; 1984 Nov; 23(23):5570-7. PubMed ID: 6509035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous vesiculation of uncharged phospholipid dispersions consisting of lecithin and lysolecithin.
    Hauser H
    Chem Phys Lipids; 1987 May; 43(4):283-99. PubMed ID: 3607970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol packing, crystallization and exchange properties in phosphatidylcholine vesicle systems.
    Phillips MC
    Hepatology; 1990 Sep; 12(3 Pt 2):75S-80S; discussion 80S-82S. PubMed ID: 2210662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.
    Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA
    Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasielastic light scattering evidence for vesicular secretion of biliary lipids.
    Cohen DE; Angelico M; Carey MC
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G1-8. PubMed ID: 2750900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of cholesterol in bilayers of phosphatidylcholines as visualized by freeze fracturing.
    Verkleij AJ; Ververgaert PH; de Kruyff B; Van Deenen LM
    Biochim Biophys Acta; 1974 Dec; 373(3):495-501. PubMed ID: 4433591
    [No Abstract]   [Full Text] [Related]  

  • 17. Differences in the release of cholesterol from taurocholate versus taurochenodeoxycholate micellar solutions.
    Chijiiwa K; Kiyosawa R; Fukudome K; Nakayama F
    Biochim Biophys Acta; 1988 Sep; 962(2):208-13. PubMed ID: 3167078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol-phosphatidylcholine interactions in multilamellar vesicles.
    Lentz BR; Barrow DA; Hoechli M
    Biochemistry; 1980 Apr; 19(9):1943-54. PubMed ID: 6892884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN; Latimer LH; O'Brien DF
    Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 2H2O/H2O replacement on the dielectric structure of lipid bilayer membranes.
    Coster HG; Laver DR; Schoenborn BP
    Biochim Biophys Acta; 1982 Mar; 686(1):141-3. PubMed ID: 6279153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.