These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 619452)

  • 21. Axonal sprouting and frank regeneration in the lizard tail spinal cord: correlation between changes in synaptic circuitry and axonal growth.
    Duffy MT; Liebich DR; Garner LK; Hawrych A; Simpson SB; Davis BM
    J Comp Neurol; 1992 Feb; 316(3):363-74. PubMed ID: 1577990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming.
    Clarke JD; Roberts A
    J Physiol; 1984 Sep; 354():345-62. PubMed ID: 6481637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segregation of optic input in a three-eyed mammal.
    Dunlop SA; Lund RD; Beazley LD
    Exp Neurol; 1996 Feb; 137(2):294-8. PubMed ID: 8635544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice.
    Inman DM; Steward O
    J Comp Neurol; 2003 Aug; 462(4):431-49. PubMed ID: 12811811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embryonic GABAergic spinal commissural neurons project rostrally to mesencephalic targets.
    Tran TS; Cohen-Cory S; Phelps PE
    J Comp Neurol; 2004 Jul; 475(3):327-39. PubMed ID: 15221949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regions of the brain influencing the projection of developing optic tracts in the salamander.
    Harris WA
    J Comp Neurol; 1980 Nov; 194(2):319-33. PubMed ID: 7440804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system.
    Fujita N; Saito R; Watanabe K; Nagata S
    Dev Biol; 2000 May; 221(2):308-20. PubMed ID: 10790328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axonal guidance of developing optic nerves in the frog. I. Anatomy of the projection from transplanted eye primordia.
    Constantine-Paton M; Capranica RR
    J Comp Neurol; 1976 Nov; 170(1):17-31. PubMed ID: 1086312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central projections of primary sensory afferents to the spinal dorsal horn in the long-tailed stingray, Himantura fai.
    Kitchener PD; Fuller J; Snow PJ
    Brain Behav Evol; 2010; 76(1):60-70. PubMed ID: 20926856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Paths, elongation, and projections of ascending chick embryonic spinal commissural neurons after crossing the floor plate.
    Arakawa T; Iwashita M; Matsuzaki F; Suzuki T; Yamamoto T
    Brain Res; 2008 Aug; 1223():25-33. PubMed ID: 18590908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bridging a complete transection lesion of adult rat spinal cord with growth factor-treated nitrocellulose implants.
    Houle JD; Ziegler MK
    J Neural Transplant Plast; 1994; 5(2):115-24. PubMed ID: 7703291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis.
    Lamborghini JE
    J Comp Neurol; 1987 Oct; 264(1):47-55. PubMed ID: 3680623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern of development of ascending and descending fibers in embryonic spinal cord of chick: II. A correlation with behavioral studies.
    Nornes HO; Hart H; Carry M
    J Comp Neurol; 1980 Jul; 192(1):133-41. PubMed ID: 7410608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord.
    Eide AL; Glover J; Kjaerulff O; Kiehn O
    J Comp Neurol; 1999 Jan; 403(3):332-45. PubMed ID: 9886034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone.
    Li Y; Carlstedt T; Berthold CH; Raisman G
    Exp Neurol; 2004 Aug; 188(2):300-8. PubMed ID: 15246830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta).
    Harting JK
    J Comp Neurol; 1977 Jun; 173(3):583-612. PubMed ID: 404340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eye-specific termination bands in tecta of three-eyed frogs.
    Constantine-Paton M; Law MI
    Science; 1978 Nov; 202(4368):639-41. PubMed ID: 309179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embryonic development of the chick primary trigeminal sensory-motor complex.
    Covell DA; Noden DM
    J Comp Neurol; 1989 Aug; 286(4):488-503. PubMed ID: 2778103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.