These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Inhibition by amiloride of 22Na+ transport into toad bladder microsomes. LaBelle EF; Valentine ME Biochim Biophys Acta; 1980 Sep; 601(1):195-205. PubMed ID: 6773576 [TBL] [Abstract][Full Text] [Related]
4. Effects of internal and external pH on amiloride-blockable Na+ transport across toad urinary bladder vesicles. Garty H; Civan ED; Civan MM J Membr Biol; 1985; 87(1):67-75. PubMed ID: 2414448 [TBL] [Abstract][Full Text] [Related]
5. Amiloride-inhibited Na+ uptake into toad bladder microsomes is Na+-H+ exchange. LaBelle EF; Eaton DC Biochim Biophys Acta; 1983 Aug; 733(1):194-7. PubMed ID: 6309226 [TBL] [Abstract][Full Text] [Related]
6. Ion channel-mediated fluxes in membrane vesicles: selective amplification of isotope uptake by electrical diffusion potentials. Garty H; Karlish SJ Methods Enzymol; 1989; 172():155-64. PubMed ID: 2473384 [TBL] [Abstract][Full Text] [Related]
7. Ca2+-induced down-regulation of Na+ channels in toad bladder epithelium. Garty H; Asher C J Biol Chem; 1986 Jun; 261(16):7400-6. PubMed ID: 2423520 [TBL] [Abstract][Full Text] [Related]
8. Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia. A study using membrane vesicles. Garty H; Asher C J Biol Chem; 1985 Jul; 260(14):8330-5. PubMed ID: 2409087 [TBL] [Abstract][Full Text] [Related]
9. Sodium-dependent inhibition of the epithelial sodium channel by an arginyl-specific reagent. Garty H; Yeger O; Asher C J Biol Chem; 1988 Apr; 263(12):5550-4. PubMed ID: 2451670 [TBL] [Abstract][Full Text] [Related]
10. Effects of amiloride analogues on Na+ transport in toad bladder membrane vesicles. Evidence for two electrogenic transporters with different affinities toward pyrazinecarboxamides. Asher C; Cragoe EJ; Garty H J Biol Chem; 1987 Jun; 262(18):8566-73. PubMed ID: 3110149 [TBL] [Abstract][Full Text] [Related]
11. Demonstration of Na+-selective channels in the luminal-membrane vesicles isolated from pars recta of rabbit proximal tubule. Jacobsen C; Røigaard-Petersen H; Sheikh MI FEBS Lett; 1988 Aug; 236(1):95-9. PubMed ID: 2456959 [TBL] [Abstract][Full Text] [Related]
12. Direct inhibition of epithelial Na+ channels by a pH-dependent interaction with calcium, and by other divalent ions. Garty H; Asher C; Yeger O J Membr Biol; 1987; 95(2):151-62. PubMed ID: 2437308 [TBL] [Abstract][Full Text] [Related]
16. The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components. Tamkun MM; Talvenheimo JA; Catterall WA J Biol Chem; 1984 Feb; 259(3):1676-88. PubMed ID: 6319406 [TBL] [Abstract][Full Text] [Related]
17. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Garty H; Benos DJ Physiol Rev; 1988 Apr; 68(2):309-73. PubMed ID: 2451832 [TBL] [Abstract][Full Text] [Related]
18. Guanosine nucleotide-dependent activation of the amiloride-blockable Na+ channel. Garty H; Yeger O; Yanovsky A; Asher C Am J Physiol; 1989 May; 256(5 Pt 2):F965-9. PubMed ID: 2541631 [TBL] [Abstract][Full Text] [Related]
19. Sodium channels in membrane vesicles from cultured toad bladder cells. Asher C; Moran A; Rossier BC; Garty H Am J Physiol; 1988 Apr; 254(4 Pt 1):C512-8. PubMed ID: 2451431 [TBL] [Abstract][Full Text] [Related]
20. Functional groups of the Na+ channel: role of carboxyl and histidyl groups. Park CS; Fanestil DD Am J Physiol; 1983 Dec; 245(6):F716-25. PubMed ID: 6140856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]