BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6195347)

  • 21. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d.
    McCrary BS; Edmondson SP; Shriver JW
    J Mol Biol; 1996 Dec; 264(4):784-805. PubMed ID: 8980686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor) to human and bovine factor Xa. A thermodynamic study.
    Ascenzi P; Coletta M; Amiconi G; Bolognesi M; Menegatti E; Guarneri M
    Biol Chem Hoppe Seyler; 1990 May; 371(5):389-93. PubMed ID: 2198885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamics of the thermal unfolding of eglin c in the presence and absence of guanidinium chloride.
    Bae SJ; Sturtevant JM
    Biophys Chem; 1995 Aug; 55(3):247-52. PubMed ID: 7626743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of basic pancreatic trypsin inhibitor and related isoinhibitors to leukocytic elastase. Determination of thermodynamic parameters.
    Fioretti E; Angeletti M; Cottini MT; Ascoli F
    J Mol Recognit; 1989 Nov; 2(3):142-6. PubMed ID: 2484014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation.
    Swint L; Robertson AD
    Protein Sci; 1993 Dec; 2(12):2037-49. PubMed ID: 8298454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz) to human Lys77-plasmin.
    Menegatti E; Guarneri M; Bolognesi M; Ascenzi P; Amiconi G
    J Mol Biol; 1986 Sep; 191(2):295-7. PubMed ID: 2433456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable p2H and temperature.
    Roder H; Wagner G; Wüthrich K
    Biochemistry; 1985 Dec; 24(25):7396-407. PubMed ID: 2417625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamics of unfolding of the alpha-amylase inhibitor tendamistat. Correlations between accessible surface area and heat capacity.
    Renner M; Hinz HJ; Scharf M; Engels JW
    J Mol Biol; 1992 Feb; 223(3):769-79. PubMed ID: 1542117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of the free energy of stabilization of ribonuclease A, lysozyme, alpha-lactalbumin, and myoglobin.
    Ahmad F; Bigelow CC
    J Biol Chem; 1982 Nov; 257(21):12935-8. PubMed ID: 7130187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Equilibrium and kinetics of the unfolding of alpha-lactalbumin by guanidine hydrochloride (IV): dependence of the N equilibrium A transconformation on the temperature.
    Nitta K; Kita N; Kuwajima K; Sugai S
    Biochim Biophys Acta; 1977 Jan; 490(1):200-8. PubMed ID: 13852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein stability: urea-induced versus guanidine-induced unfolding of metmyoglobin.
    Gupta R; Yadav S; Ahmad F
    Biochemistry; 1996 Sep; 35(36):11925-30. PubMed ID: 8794776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of bovine basic pancreatic trypsin inhibitor (Kunitz) as well as bovine and porcine pancreatic secretory trypsin inhibitor (Kazal) to human cathepsin G: a kinetic and thermodynamic study.
    Fioretti E; Angeletti M; Coletta M; Ascenzi P; Bolognesi M; Menegatti E; Rizzi M; Ascoli F
    J Enzyme Inhib; 1993; 7(1):57-64. PubMed ID: 7510795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation.
    Pace CN; McGrath T
    J Biol Chem; 1980 May; 255(9):3862-5. PubMed ID: 7372654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model-independent, nonlinear extrapolation procedure for the characterization of protein folding energetics from solvent-denaturation data.
    Ibarra-Molero B; Sanchez-Ruiz JM
    Biochemistry; 1996 Nov; 35(47):14689-702. PubMed ID: 8942629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH dependence of the stability of barstar to chemical and thermal denaturation.
    Khurana R; Hate AT; Nath U; Udgaonkar JB
    Protein Sci; 1995 Jun; 4(6):1133-44. PubMed ID: 7549878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM
    Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures.
    Sawano M; Yamamoto H; Ogasahara K; Kidokoro S; Katoh S; Ohnuma T; Katoh E; Yokoyama S; Yutani K
    Biochemistry; 2008 Jan; 47(2):721-30. PubMed ID: 18154307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein.
    Ganesh C; Shah AN; Swaminathan CP; Surolia A; Varadarajan R
    Biochemistry; 1997 Apr; 36(16):5020-8. PubMed ID: 9125524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of local structures in reduced unfolded bovine pancreatic trypsin inhibitor.
    Amir D; Krausz S; Haas E
    Proteins; 1992 Apr; 13(2):162-73. PubMed ID: 1377825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Denaturant-dependent folding of bovine pancreatic trypsin inhibitor mutants with two intact disulfide bonds.
    Hurle MR; Marks CB; Kosen PA; Anderson S; Kuntz ID
    Biochemistry; 1990 May; 29(18):4410-9. PubMed ID: 1693524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.