BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6197999)

  • 1. Proteolytic activities of cobra venoms based on inactivation of alpha 2-macroglobulin.
    Evans HJ; Guthrie VH
    Biochim Biophys Acta; 1984 Jan; 784(2-3):97-101. PubMed ID: 6197999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cobra and viper venoms on alpha 2-macroglobulin activity in human, bovine, and goat sera.
    Sujatha S; Jacob RT; Pattabiraman TN
    Biochem Med Metab Biol; 1988 Apr; 39(2):217-25. PubMed ID: 2454124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-compartment open pharmacokinetic model can explain variable toxicities of cobra venoms and their alpha toxins.
    Ismail M; Aly MH; Abd-Elsalam MA; Morad AM
    Toxicon; 1996 Sep; 34(9):1011-26. PubMed ID: 8896193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of a fibrinogenase from the venom of Naja nigricollis.
    Evans HJ
    Biochim Biophys Acta; 1984 Nov; 802(1):49-54. PubMed ID: 6435687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and biological characterization of the venoms of
    Win MN; Yee KT; Htwe KM; Thin EE; Win SM; Kyaw AM; Aye MM; Khaing KK; Thwe WM; Htwe KK; Zaw A
    Toxicon X; 2024 Jun; 22():100196. PubMed ID: 38665175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecific and intraspecific venom enzymatic variation among cobras (Naja sp. and Ophiophagus hannah).
    Modahl CM; Roointan A; Rogers J; Currier K; Mackessy SP
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Jun; 232():108743. PubMed ID: 32194156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches.
    Liu CC; You CH; Wang PJ; Yu JS; Huang GJ; Liu CH; Hsieh WC; Lin CC
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006138. PubMed ID: 29244815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah.
    Zeng L; Sun QY; Jin Y; Zhang Y; Lee WH; Zhang Y
    Toxicon; 2012 Sep; 60(3):290-301. PubMed ID: 22561424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the complex between human alpha 2-macroglobulin and Crotalus adamanteus proteinase II. Release of active proteinase from the complex.
    Kress LF; Kurecki T
    Biochim Biophys Acta; 1980 Jun; 613(2):469-75. PubMed ID: 6160877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pro-inflammatory activities in elapid snake venoms.
    Tambourgi DV; dos Santos MC; Furtado Mde F; de Freitas MC; da Silva WD; Kipnis TL
    Br J Pharmacol; 1994 Jul; 112(3):723-7. PubMed ID: 7921595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of
    Williams HF; Hayter P; Ravishankar D; Baines A; Layfield HJ; Croucher L; Wark C; Bicknell AB; Trim S; Vaiyapuri S
    Toxins (Basel); 2018 Dec; 10(12):. PubMed ID: 30558289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic inactivation of human alpha 1-antichymotrypsin by metalloproteinases in snake venoms of the family Elapidae.
    Kress LF; Hufnagel ME
    Comp Biochem Physiol B; 1984; 77(3):431-6. PubMed ID: 6425006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.
    Gowtham YJ; Kumar MS; Girish KS; Kemparaju K
    Biochemistry (Mosc); 2012 Jun; 77(6):639-47. PubMed ID: 22817464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Naja haje (Egyptian cobra), Naja naja (hooded cobra), Naja nigricollis (spitting cobra) and Naja mossambica mossambica (Mozambique spitting cobra) venoms on the isolated guinea-pig tracheal muscle.
    Tilmisany AK; Abdel Aziz A; Osman OH; Mustafa AA
    Toxicon; 1986; 24(11-12):1162-5. PubMed ID: 3564065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of proteomic profiles of the venoms of two of the 'Big Four' snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins.
    Choudhury M; McCleary RJR; Kesherwani M; Kini RM; Velmurugan D
    Toxicon; 2017 Sep; 135():33-42. PubMed ID: 28602829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid sequences of nerve growth factors derived from cobra venoms.
    Inoue S; Oda T; Koyama J; Ikeda K; Hayashi K
    FEBS Lett; 1991 Feb; 279(1):38-40. PubMed ID: 1995338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra (Naja kaouthia) from China.
    Xu N; Zhao HY; Yin Y; Shen SS; Shan LL; Chen CX; Zhang YX; Gao JF; Ji X
    J Proteomics; 2017 Apr; 159():19-31. PubMed ID: 28263888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ex vivo Eye Irritation Test (EVEIT) model as a mean of improving venom ophthalmia understanding.
    Delafontaine M; Panfil C; Spöler F; Kray S; Burgher F; Mathieu L; Blomet J; Schrage NF; Tambourgi DV
    Toxicon; 2018 Aug; 150():253-260. PubMed ID: 29890230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).
    Tan CH; Tan KY; Fung SY; Tan NH
    BMC Genomics; 2015 Sep; 16(1):687. PubMed ID: 26358635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Look at the Venom of Naja ashei.
    Hus KK; Buczkowicz J; Petrilla V; Petrillová M; Łyskowski A; Legáth J; Bocian A
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29518026
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.