These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6198049)

  • 1. Cortico-cortical connections reorganize in hamsters after neonatal transection of the callosal bridge.
    Lent R
    Brain Res; 1983 Dec; 313(1):137-42. PubMed ID: 6198049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomical effects of neonatal transection of the corpus callosum in hamsters.
    Lent R
    J Comp Neurol; 1984 Mar; 223(4):548-55. PubMed ID: 6715571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure.
    Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC
    J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axons from restricted regions of the cortex pass through restricted portions of the corpus callosum in adult and neonatal rats.
    Olavarria J; van Sluyters RC
    Brain Res; 1986 Mar; 390(2):309-13. PubMed ID: 3513903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalamic ablations and neocortical development: alterations in thalamic and callosal connectivity.
    Miller B; Windrem MS; Finlay BL
    Cereb Cortex; 1991; 1(3):241-61. PubMed ID: 1822735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guidance of callosal axons by radial glia in the developing cerebral cortex.
    Norris CR; Kalil K
    J Neurosci; 1991 Nov; 11(11):3481-92. PubMed ID: 1941093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of paleocortical projections through the anterior commissure of hamsters adopts progressive, not regressive, strategies.
    Lent R; GuimarĂ£es RZ
    J Neurobiol; 1991 Jul; 22(5):475-98. PubMed ID: 1890425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The arborization of single callosal axons in the mouse cerebral cortex.
    Hartenstein V; Innocenti GM
    Neurosci Lett; 1981 Apr; 23(1):19-24. PubMed ID: 6164965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of cell number in the developing neocortex. II. Effects of corpus callosum section.
    Windrem MS; Jan de Beur S; Finlay BL
    Brain Res; 1988 Sep; 471(1):13-22. PubMed ID: 3219590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurogenesis and development of callosal and intracortical connections in the hamster.
    Lent R; Hedin-Pereira C; Menezes JR; Jhaveri S
    Neuroscience; 1990; 38(1):21-37. PubMed ID: 2175019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Callosal connections of the cortical taste area in rats.
    Hayama T; Ogawa H
    Brain Res; 2001 Nov; 918(1-2):171-5. PubMed ID: 11684055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy.
    Halloran MC; Kalil K
    J Neurosci; 1994 Apr; 14(4):2161-77. PubMed ID: 8158263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bicommissural neurones in the cerebral cortex of developing hamsters.
    Hedin-Pereira C; Uziel D; Lent R
    Neuroreport; 1992 Oct; 3(10):873-6. PubMed ID: 1421091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fibers which course within the Probst's longitudinal bundle seen in the brain of a congenitally acallosal mouse: a study with the horseradish peroxidase technique.
    Ozaki HS; Shimada M
    Brain Res; 1988 Feb; 441(1-2):5-14. PubMed ID: 2451987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of interhemispheric connections through the anterior commissure in hamsters.
    Lent R; GuimarĂ£es RZ
    Braz J Med Biol Res; 1990; 23(8):671-5. PubMed ID: 2101092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity.
    Miller B; Nagy D; Finlay BL; Chance B; Kobayashi A; Nioka S
    Exp Neurol; 1993 Dec; 124(2):326-42. PubMed ID: 7507062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous patterns of callosal connections develop in visual cortex of monocularly enucleated hamsters.
    O'Brien BJ; Olavarria JF
    Biol Res; 1995; 28(3):211-8. PubMed ID: 9251751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: a study based on anterograde and retrograde methods.
    Caviness VS; Yorke CH
    J Comp Neurol; 1976 Dec; 170(4):449-59. PubMed ID: 63471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal specification of callosal connections in rhesus monkey.
    Schwartz ML; Goldman-Rakic PS
    J Comp Neurol; 1991 May; 307(1):144-62. PubMed ID: 1713225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal enucleation induces an asymmetric pattern of visual callosal connections in hamsters.
    Rhoades RW; Dellacroce DD
    Brain Res; 1980 Nov; 202(1):189-95. PubMed ID: 7427734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.