These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6198209)

  • 1. Identification of a plasma membrane protein involved in Pi transport in the yeast Candida tropicalis.
    Jeanjean R; Blasco F; Hirn M
    FEBS Lett; 1984 Jan; 165(1):83-7. PubMed ID: 6198209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate uptake in the yeast Candida tropicalis: purification of phosphate-binding protein and investigations about its role in phosphate uptake.
    Jeanjean R; Bedu S; Rocca-Serra J; Foucault C
    Arch Microbiol; 1984 Mar; 137(3):215-9. PubMed ID: 6372722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic phosphate uptake by protoplasts and whole cells of yeast Candida tropicalis: absence of high affinity transport system in protoplasts.
    Jeanjean R; Bedu S; Attia A; Rocca-Serra J
    Biochimie; 1982 Jan; 64(1):75-8. PubMed ID: 7066409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunological evidence for the involvement of cell wall proteins in phosphate uptake in the yeast Saccharomyces cerevisiae.
    Jeanjean R; Bédu S; Nieuwenhuis BJ; Hirn M
    Arch Microbiol; 1986 Apr; 144(3):207-12. PubMed ID: 3524497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and partial purification of phosphate-binding proteins in Candida tropicalis.
    Jeanjean R; Fournier N
    FEBS Lett; 1979 Sep; 105(1):163-6. PubMed ID: 488339
    [No Abstract]   [Full Text] [Related]  

  • 6. Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein.
    Poole K; Hancock RE
    Eur J Biochem; 1984 Nov; 144(3):607-12. PubMed ID: 6436026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of nutrients in yeast protoplasts.
    Kotyk A
    Experientia Suppl; 1983; 46():209-12. PubMed ID: 6370717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice.
    Wang C; Yue W; Ying Y; Wang S; Secco D; Liu Y; Whelan J; Tyerman SD; Shou H
    Plant Physiol; 2015 Dec; 169(4):2822-31. PubMed ID: 26424157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation into the feasibility of using azide-insensitive ATPase and ConA as yeast plasma membrane markers.
    Blasco F; Gidrol X; Giordani R
    Arch Microbiol; 1982 Oct; 132(4):317-21. PubMed ID: 6129837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent phosphate transport in osteoblast-like cells.
    Luong KV; Green J; Kleeman CR; Yamaguchi DT
    J Bone Miner Res; 1991 Nov; 6(11):1161-5. PubMed ID: 1805540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Demonstration of 2 phosphate transport systems in Candida tropicalis].
    Blasco F; Ducet G; Azoulay E
    Biochimie; 1976; 58(3):351-7. PubMed ID: 1276239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parathyroid hormone inhibits plasma membrane Pi transport without changing endocytic activity in opossum kidney cells.
    Paraiso MS; McAteer JA; Kempson SA
    Biochim Biophys Acta; 1995 Apr; 1266(2):143-7. PubMed ID: 7742379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization and reconstitution of the renal phosphate transporter.
    Schäli C; Fanestil DD
    Biochim Biophys Acta; 1985 Sep; 819(1):66-74. PubMed ID: 4041452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 3,5,3'-triiodothyronine on maturation of rat renal phosphate transport: kinetic characteristics and phosphate transporter messenger ribonucleic acid and protein abundance.
    Euzet S; Lelièvre-Pégorier M; Merlet-Bénichou C
    Endocrinology; 1996 Aug; 137(8):3522-30. PubMed ID: 8754782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenic relationships between plasma membrane ATPases of two different yeasts, Candida tropicalis and Schizosaccharomyces pombe.
    Blasco F; Jeanjean R; Hirn M; Ritz P
    Biochem Biophys Res Commun; 1983 Sep; 115(3):1114-9. PubMed ID: 6194797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of sodium-dependent phosphate transport in osteoclasts.
    Gupta A; Guo XL; Alvarez UM; Hruska KA
    J Clin Invest; 1997 Aug; 100(3):538-49. PubMed ID: 9239400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate.
    Arpat AB; Magliano P; Wege S; Rouached H; Stefanovic A; Poirier Y
    Plant J; 2012 Aug; 71(3):479-91. PubMed ID: 22449068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Mg2+ and ATP on the phosphate transporter of sarcoplasmic reticulum.
    Stefanova HI; Jane SD; East JM; Lee AG
    Biochim Biophys Acta; 1991 May; 1064(2):329-34. PubMed ID: 1645201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Na+/Pi-cotransporter of OK cells: reaction and tentative identification with N-acetylimidazole.
    Wuarin F; Wu K; Murer H; Biber J
    Biochim Biophys Acta; 1989 Jun; 981(2):185-92. PubMed ID: 2730900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of the ATP-dependent taurocholate-carrier protein (gp110) of the hepatocyte canalicular membrane.
    Becker A; Lucka L; Kilian C; Kannicht C; Reutter W
    Eur J Biochem; 1993 Jun; 214(2):539-48. PubMed ID: 8513803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.