These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 6198504)
21. [On the role of pentachlorocyclohexene in the metabolism and action of hexachlorocyclohexane. I. Synthesis of beta-pentachlorocyclohexene and its identification as the monodehydrochlorination product of alpha-hexachlorocyclohexane (author's transl)]. Münster J; Hermann RS; Koransky W; Hoyer GA Hoppe Seylers Z Physiol Chem; 1975 Apr; 356(4):437-47. PubMed ID: 50259 [TBL] [Abstract][Full Text] [Related]
22. Qualitative and quantitative differences in the induction and inhibition of hepatic benzo[a]pyrene metabolism in the rat and hamster. Wroblewski VJ; Gessner T; Olson JR Biochem Pharmacol; 1988 Apr; 37(8):1509-17. PubMed ID: 3358781 [TBL] [Abstract][Full Text] [Related]
23. In vivo and in vitro binding of alpha- and gamma-hexachlorocyclohexane to mouse liver macromolecules. Iverson F; Ryan JJ; Lizotte R; Hierlihy SL Toxicol Lett; 1984 Mar; 20(3):331-5. PubMed ID: 6199873 [TBL] [Abstract][Full Text] [Related]
24. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
25. Metabolism of antiparkinson agent dopazinol by rat liver microsomes. Vyas KP; Kari PH; Ramjit HG; Pitzenberger SM; Hichens M Drug Metab Dispos; 1990; 18(6):1025-30. PubMed ID: 1981508 [TBL] [Abstract][Full Text] [Related]
26. Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin. Vyas KP; Kari PH; Prakash SR; Duggan DE Drug Metab Dispos; 1990; 18(2):218-22. PubMed ID: 1971576 [TBL] [Abstract][Full Text] [Related]
27. Oxidative transformation of hexachlorocyclohexane in rats and with rat liver microsomes. Stein K; Portig J; Koransky W Naunyn Schmiedebergs Arch Pharmacol; 1977 Jun; 298(2):115-28. PubMed ID: 69994 [No Abstract] [Full Text] [Related]
28. Metabolism of alpha-hexachlorocyclohexane. Free metabolites in urine and organs of rats. Macholz RM; Knoll R; Lewerenz HJ; Petrzika M; Engst R Xenobiotica; 1982 Apr; 12(4):227-31. PubMed ID: 6180561 [TBL] [Abstract][Full Text] [Related]
29. Roles of human CYP2A6 and rat CYP2B1 in the oxidation of (+)-fenchol by liver microsomes. Miyazawa M; Gyoubu K Xenobiotica; 2007 Sep; 37(9):943-53. PubMed ID: 17992728 [TBL] [Abstract][Full Text] [Related]
30. Steric factors in the pharmacokinetics of lindane and alpha-hexachlorocyclohexane in rats. Stein K; Portig J; Fuhrmann H; Koransky W; Noack G Xenobiotica; 1980 Jan; 10(1):65-77. PubMed ID: 6155746 [TBL] [Abstract][Full Text] [Related]
31. Specific labelling of microsomal proteins by reactive intermediates generated from 2-acetylaminofluorene in vitro. Kaderbhai MA; Bradshaw TK; Freedman RB Chem Biol Interact; 1981 Aug; 36(2):211-27. PubMed ID: 7273244 [TBL] [Abstract][Full Text] [Related]
32. Evidence for a predominantly NADH-dependent O-dealkylating system in rat hepatic microsomes. Kuwahara S; Mannering GJ Biochem Pharmacol; 1985 Dec; 34(24):4215-28. PubMed ID: 3935115 [TBL] [Abstract][Full Text] [Related]
33. Regioselectivity of hydroxylation of prostaglandins by liver microsomes supported by NADPH versus H2O2 in methylcholanthrene-treated and control rats: formation of novel prostaglandin metabolites. Holm KA; Engell RJ; Kupfer D Arch Biochem Biophys; 1985 Mar; 237(2):477-89. PubMed ID: 3856417 [TBL] [Abstract][Full Text] [Related]
34. Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. Camacho-Pérez B; Ríos-Leal E; Rinderknecht-Seijas N; Poggi-Varaldo HM J Environ Manage; 2012 Mar; 95 Suppl():S306-18. PubMed ID: 21992990 [TBL] [Abstract][Full Text] [Related]
35. Studies on the metabolism of l-menthol in rats. Madyastha KM; Srivatsan V Drug Metab Dispos; 1988; 16(5):765-72. PubMed ID: 2906604 [TBL] [Abstract][Full Text] [Related]
36. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Yoshida T; Yamada Y; Yamamoto T; Kuroiwa Y Xenobiotica; 1986 Feb; 16(2):129-36. PubMed ID: 3083608 [TBL] [Abstract][Full Text] [Related]
37. In vitro metabolism of the antianxiety drug buspirone as a predictor of its metabolism in vivo. Jajoo HK; Blair IA; Klunk LJ; Mayol RF Xenobiotica; 1990 Aug; 20(8):779-86. PubMed ID: 2219961 [TBL] [Abstract][Full Text] [Related]
38. The metabolism of some xenobiotics in germ-free and conventional rats. Macholz R; Kujawa M; Schulze J; Lewerenz HJ; Schnaak W Arch Toxicol Suppl; 1985; 8():373-6. PubMed ID: 2420308 [TBL] [Abstract][Full Text] [Related]
39. Covalent binding of polychlorinated biphenyls to proteins by reconstituted monooxygenase system containing cytochrome P-450. Shimada T; Imai Y; Sato R Chem Biol Interact; 1981 Dec; 38(1):29-44. PubMed ID: 6799213 [TBL] [Abstract][Full Text] [Related]
40. Microsomal metabolism of the carcinogen, N-2-fluorenylacetamide, by the mammary gland and liver of female rats. I. Ring- and N-hydroxylations of N-2-fluorenylacetamide. Malejka-Giganti D; Decker RW; Ritter CL; Polovina MR Carcinogenesis; 1985 Jan; 6(1):95-103. PubMed ID: 3967341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]