These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 6198879)

  • 41. [Experiences with the inspection of sewage from nuclear power plants as an example for decreasing industrial waste water disposal].
    Aurand K; Gans I
    Schriftenr Ver Wasser Boden Lufthyg; 1984; 57():39-54. PubMed ID: 6484519
    [No Abstract]   [Full Text] [Related]  

  • 42. [Purification and posttreatment of sewage in biological ponds].
    Zaichenko AI; Kolesov AM; Romanenko NA
    Gig Sanit; 1979 Oct; (10):66-7. PubMed ID: 499837
    [No Abstract]   [Full Text] [Related]  

  • 43. Recovery and characterization of Balanites aegyptiaca Del. kernel proteins. Effect of defatting, air classification, wet sieving and aqueous ethanol treatment on solubility, digestibility, amino acid composition and sapogenin content.
    Mohamed AM; Wolf W; Spiess WE
    Nahrung; 2000 Feb; 44(1):7-12. PubMed ID: 10702992
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regional planning and product recovery as tools for sustainable sludge management.
    Stypka T; Plaza E; Stypka A; Trela J; Hultman B
    Water Sci Technol; 2002; 46(4-5):389-96. PubMed ID: 12361038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Amino acid composition of polynucleotide-peptide complexes isolated from algae].
    Pusheva MA; Khoreva MA
    Mikrobiologiia; 1977; 46(1):62-5. PubMed ID: 404512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance intensification of Prague wastewater treatment plant.
    Novák L; Havrlíková D
    Water Sci Technol; 2004; 50(7):139-46. PubMed ID: 15553469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production.
    Zorpas AA; Arapoglou D; Panagiotis K
    Waste Manag; 2003; 23(1):27-35. PubMed ID: 12623099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological nitrogen removal from industrial wastewater discharged from metal recovery processes.
    Hirata A; Nakamura Y; Tsuneda S
    Water Sci Technol; 2001; 44(2-3):171-9. PubMed ID: 11547981
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incorporation of toxicity tests into the Turkish industrial discharge monitoring systems.
    Sponza DT
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):186-97. PubMed ID: 12115044
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle.
    Voltolina D; Gómez-Villa H; Correa G
    Bioresour Technol; 2005 Feb; 96(3):359-62. PubMed ID: 15474938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The assessment of genotoxic effects of wastewater from a fertilizer factory.
    Durgo K; Orescanin V; Lulić S; Kopjar N; Eljezić DZ; Colić JF
    J Appl Toxicol; 2009 Jan; 29(1):42-51. PubMed ID: 18785684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of physicochemical nitrogen removal process for high strength industrial wastewater.
    Lee S; Maken S; Jang JH; Park K; Park JW
    Water Res; 2006 Mar; 40(5):975-80. PubMed ID: 16494921
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toxicity of reactive red 141 and basic red 14 to algae and waterfleas.
    Vinitnantharat S; Chartthe W; Pinisakul A
    Water Sci Technol; 2008; 58(6):1193-8. PubMed ID: 18845856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa.
    Thanapornpoonpong SN; Vearasilp S; Pawelzik E; Gorinstein S
    J Agric Food Chem; 2008 Dec; 56(23):11464-70. PubMed ID: 19006392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions.
    Peng Z; Wu F; Deng N
    Environ Pollut; 2006 Dec; 144(3):840-6. PubMed ID: 16603296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iron-mediated removal of ammonium from strong nitrogenous wastewater from food processing.
    Ivanov V; Wang JY; Stabnikova O; Krasinko V; Stabnikov V; Tay ST; Tay JH
    Water Sci Technol; 2004; 49(5-6):421-5. PubMed ID: 15137453
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Health and environmental impacts of a fertilizer plant--Part I: assessment of radioactive pollution.
    Righi S; Lucialli P; Bruzzi L
    J Environ Radioact; 2005; 82(2):167-82. PubMed ID: 15878416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Biological treatment for mixed TNT-RDX wastewater by screened bacteria strains].
    Yang YX; Li WZ; Yin P; Chen HR; Shao DS; Zhao YZ; Liu SS
    Wei Sheng Wu Xue Bao; 1986 Mar; 26(1):53-9. PubMed ID: 3604208
    [No Abstract]   [Full Text] [Related]  

  • 59. Effect of high zinc concentrations on the growth of Stichococcus bacillaris and Chlorella vulgaris.
    Skowroński T; Rzeczycka M
    Acta Microbiol Pol; 1980; 29(4):389-96. PubMed ID: 6164258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dutch analysis for P-recovery from municipal wastewater.
    Roeleveld P; Loeffen P; Temmink H; Klapwijk B
    Water Sci Technol; 2004; 49(10):191-9. PubMed ID: 15259955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.