These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 6199483)
1. Bilateral branching contributes minimally to the enhanced ipsilateral projection in monocular Syrian golden hamsters. Hsiao K J Neurosci; 1984 Feb; 4(2):368-73. PubMed ID: 6199483 [TBL] [Abstract][Full Text] [Related]
2. A minute fraction of Syrian golden hamster retinal ganglion cells project bilaterally. Hsiao K; Sachs GM; Schneider GE J Neurosci; 1984 Feb; 4(2):359-67. PubMed ID: 6199482 [TBL] [Abstract][Full Text] [Related]
3. Postnatal changes in the uncrossed retinal projection of pigmented and albino Syrian hamsters and the effects of monocular enucleation. Thompson ID; Cordery P; Holt CE J Comp Neurol; 1995 Jun; 357(2):181-203. PubMed ID: 7545188 [TBL] [Abstract][Full Text] [Related]
4. The postnatal development of retinocollicular projections in normal hamsters and in hamsters following neonatal monocular enucleation: a horseradish peroxidase tracing study. Woo HH; Jen LS; So KF Brain Res; 1985 May; 352(1):1-13. PubMed ID: 4005612 [TBL] [Abstract][Full Text] [Related]
5. Postnatal development of the ipsilaterally projecting retinal ganglion cells in normal rats and rats with neonatal lesions. Chan SO; Chow KL; Jen LS Brain Res Dev Brain Res; 1989 Oct; 49(2):265-74. PubMed ID: 2478316 [TBL] [Abstract][Full Text] [Related]
6. Preservation of the entire population of normally transient ipsilaterally projecting retinal ganglion cells by neonatal lesions in the rat. Jen LS; Chan SO; Chau RM Exp Brain Res; 1990; 80(1):205-8. PubMed ID: 1694136 [TBL] [Abstract][Full Text] [Related]
7. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster. Rhoades RW; Chalupa LM J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351 [TBL] [Abstract][Full Text] [Related]
8. Cell death and interocular interactions among retinofugal axons: lack of binocularly matched specificity. Serfaty CA; Reese BE; Linden R Brain Res Dev Brain Res; 1990 Nov; 56(2):198-204. PubMed ID: 1702041 [TBL] [Abstract][Full Text] [Related]
9. Retinal ganglion cells in normal hamsters and hamsters with novel retinal projections. I. Number, distribution, and size. Métin C; Irons WA; Frost DO J Comp Neurol; 1995 Mar; 353(2):179-99. PubMed ID: 7745130 [TBL] [Abstract][Full Text] [Related]
10. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections. Singman EL; Scalia F J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068 [TBL] [Abstract][Full Text] [Related]
11. Aberrant retinal projections to midbrain targets mediate spared visual orienting function in hamsters with neonatal lesions of superior colliculus. Carman LS; Schneider GE Exp Brain Res; 1992; 90(1):92-102. PubMed ID: 1521619 [TBL] [Abstract][Full Text] [Related]
12. An anterograde HRP study of the retinocollicular pathways in normal hamsters and hamsters with one eye enucleated at birth. Jen LS; So KF; Woo HH Brain Res; 1984 Feb; 294(1):169-73. PubMed ID: 6697234 [TBL] [Abstract][Full Text] [Related]
13. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity. Finlay BL; Wilson KG; Schneider GE J Comp Neurol; 1979 Feb; 183(4):721-40. PubMed ID: 762269 [TBL] [Abstract][Full Text] [Related]
14. Class-specific cell death shapes the distribution and pattern of central projection of cat retinal ganglion cells. Leventhal AG; Schall JD; Ault SJ; Provis JM; Vitek DJ J Neurosci; 1988 Jun; 8(6):2011-27. PubMed ID: 2838592 [TBL] [Abstract][Full Text] [Related]
15. Bifurcating retinal ganglion cell axons in the rat, demonstrated by retrograde double labelling. Jeffery G; Cowey A; Kuypers HG Exp Brain Res; 1981; 44(1):34-40. PubMed ID: 6168482 [No Abstract] [Full Text] [Related]
16. Plastic changes in the distribution and soma size of retinal ganglion cells after neonatal monocular enucleation in rats. Hsiao CF; Fukuda Y Brain Res; 1984 May; 301(1):1-12. PubMed ID: 6733482 [TBL] [Abstract][Full Text] [Related]
17. Compensation for population size mismatches in the hamster retinotectal system: alterations in the organization of retinal projections. Pallas SL; Finlay BL Vis Neurosci; 1991 Mar; 6(3):271-81. PubMed ID: 2054328 [TBL] [Abstract][Full Text] [Related]
18. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M; Pallas SL; Lim S; Finlay BL J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893 [TBL] [Abstract][Full Text] [Related]
19. Enlargement of uncrossed retinal projections in the albino rat: additive effects of neonatal eye removal and thalamectomy. Chan SO; Jen LS Brain Res; 1988 Sep; 461(1):163-8. PubMed ID: 3224274 [TBL] [Abstract][Full Text] [Related]
20. Effects of neonatal enucleation on the functional organization of the superior colliculus in the golden hamster. Rhoades RW J Physiol; 1980 Apr; 301():383-99. PubMed ID: 7411438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]