These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6199483)

  • 21. Transient retinofugal pathways in the developing chick.
    McLoon SC; Lund RD
    Exp Brain Res; 1982; 45(1-2):277-84. PubMed ID: 6173249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets.
    Bhide PG; Frost DO
    J Neurosci; 1991 Feb; 11(2):485-504. PubMed ID: 1992013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse.
    Dräger UC
    Proc R Soc Lond B Biol Sci; 1985 Mar; 224(1234):57-77. PubMed ID: 2581263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity and the control of ganglion cell death in the rat retina.
    Fawcett JW; O'Leary DD; Cowan WM
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5589-93. PubMed ID: 6591206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The normal and abnormal postnatal development of retinogeniculate projections in golden hamsters: an anterograde horseradish peroxidase tracing study.
    So KF; Woo HH; Jen LS
    Brain Res; 1984 Feb; 314(2):191-205. PubMed ID: 6704748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):920-9. PubMed ID: 2984359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):911-9. PubMed ID: 2984358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postnatal development of the ipsilateral retinocollicular projection and the effects of unilateral enucleation in the golden hamster.
    Insausti R; Blakemore C; Cowan WM
    J Comp Neurol; 1985 Apr; 234(3):393-409. PubMed ID: 3988992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of neonatal cortical lesions upon retinocollicular projections in the hamster.
    Rhoades RW; Kuo DC; Polcer JD
    Neuroscience; 1982 Oct; 7(10):2441-58. PubMed ID: 7177383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ipsilateral retinofugal and retinopetal projections in normal and monocular cichlid fish.
    Fritzsch B; Wilm C; Crapon de Caprona MD
    Neurosci Lett; 1987 Aug; 78(3):259-64. PubMed ID: 3627561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ganglion cell death during development of ipsilateral retino-collicular projection in golden hamster.
    Insausti R; Blakemore C; Cowan WM
    Nature; 1984 Mar 22-28; 308(5957):362-5. PubMed ID: 6709042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The distribution of ipsilaterally and contralaterally projecting ganglion cells in the retina of the pigmented rabbit.
    Provis JM; Watson CR
    Exp Brain Res; 1981; 44(1):82-92. PubMed ID: 6168483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity and interaction after ablations of visual or somatosensory motor cortex or retina in neonatal rats.
    Leong SK
    J Neurol Sci; 1980 Feb; 45(1):87-102. PubMed ID: 7359169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monocular enucleation in adult hamsters induces functional changes in the remaining ipsilateral retinotectal projection.
    Chalupa LM; Henderson Z
    Brain Res; 1980 Jun; 192(1):249-54. PubMed ID: 7378782
    [No Abstract]   [Full Text] [Related]  

  • 36. Ganglion cell death within the developing retina: a regulatory role for retinal dendrites?
    Linden R; Perry VH
    Neuroscience; 1982; 7(11):2813-27. PubMed ID: 7155355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal projections to the pretectum, accessory optic system and superior colliculus in pigmented and albino ferrets.
    Zhang HY; Hoffmann KP
    Eur J Neurosci; 1993 May; 5(5):486-500. PubMed ID: 8261124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neonatal monocular enucleation and the geniculo-cortical system in the golden hamster: shrinkage in dorsal lateral geniculate nucleus and area 17 and the effects on relay cell size and number.
    Trevelyan AJ; Thompson ID
    Vis Neurosci; 1995; 12(5):971-83. PubMed ID: 8924419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ipsilateral retinal projections into the tectum during regeneration of the optic nerve in the cichlid fish Haplochromis burtoni: a Dil study in fixed tissue.
    Wilm C; Fritzsch B
    J Neurobiol; 1992 Aug; 23(6):692-707. PubMed ID: 1431840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A retinal projection to the paraventricular nuclei of the hypothalamus in the Syrian hamster (Mesocricetus auratus).
    Youngstrom TG; Weiss ML; Nunez AA
    Brain Res Bull; 1987 Dec; 19(6):747-50. PubMed ID: 2449940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.