BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6199696)

  • 21. Seasonal regulation of neuroendocrine activity in male Turkish hamsters (Mesocricetus brandti): role of the hypothalamic paraventricular nucleus.
    Badura LL; Goldman BD
    Neuroendocrinology; 1992 Apr; 55(4):477-84. PubMed ID: 1565210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paraventricular-subparaventricular hypothalamic lesions selectively affect circadian function.
    Moore RY; Danchenko RL
    Chronobiol Int; 2002 Mar; 19(2):345-60. PubMed ID: 12025929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of paraventricular catecholamines in feeding-associated corticosterone rhythm in rats.
    Honma K; Noe Y; Honma S; Katsuno Y; Hiroshige T
    Am J Physiol; 1992 Jun; 262(6 Pt 1):E948-55. PubMed ID: 1616028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of asymmetrical reductions of photoperiod on pineal melatonin, locomotor activity and gonadal condition of male Syrian hamsters.
    Hastings MH; Walker AP; Herbert J
    J Endocrinol; 1987 Aug; 114(2):221-9. PubMed ID: 3655610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circadian rhythms and photoperiodic time measurement in mammals.
    Elliott JA
    Fed Proc; 1976 Oct; 35(12):2339-46. PubMed ID: 964387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suprachiasmatic nucleus and photoperiodic regulation of gonadal development in the Siberian hamster, Phodopus sungorus.
    Kelly KK; Dark J; Zucker I
    Neurosci Lett; 1995 May; 190(2):129-32. PubMed ID: 7644121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of the Per1 gene in the hamster: brain atlas and circadian characteristics in the suprachiasmatic nucleus.
    Yamamoto S; Shigeyoshi Y; Ishida Y; Fukuyama T; Yamaguchi S; Yagita K; Moriya T; Shibata S; Takashima N; Okamura H
    J Comp Neurol; 2001 Feb; 430(4):518-32. PubMed ID: 11169484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoperiodic effects in the Djungarian hamster. Rate of testicular regression and extension of pineal melatonin pattern depend on the way of change from long to short photoperiods.
    Hoffmann K; Illnerová H
    Neuroendocrinology; 1986; 43(3):317-21. PubMed ID: 3736780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pineal gland influences rat circadian activity rhythms in constant light.
    Cassone VM
    J Biol Rhythms; 1992; 7(1):27-40. PubMed ID: 1571591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase nor to lesions of the suprachiasmatic nuclei.
    Maywood ES; Buttery RC; Vance GH; Herbert J; Hastings MH
    Biol Reprod; 1990 Aug; 43(2):174-82. PubMed ID: 2378931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms.
    Gannon RL; Garcia DA; Millan MJ
    Eur Neuropsychopharmacol; 2014 Jun; 24(6):964-73. PubMed ID: 24388152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes.
    Challet E; Jacob N; Vuillez P; Pévet P; Malan A
    Brain Res; 1997 Oct; 770(1-2):228-36. PubMed ID: 9372223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus.
    Ebling FJ; Maywood ES; Humby T; Hastings MH
    J Biol Rhythms; 1992; 7(3):241-54. PubMed ID: 1330085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melatonin, the pineal gland, and circadian rhythms.
    Cassone VM; Warren WS; Brooks DS; Lu J
    J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms.
    Gorman MR; Yellon SM; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):552-63. PubMed ID: 11760013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain.
    Lehman MN; Silver R; Gladstone WR; Kahn RM; Gibson M; Bittman EL
    J Neurosci; 1987 Jun; 7(6):1626-38. PubMed ID: 3598638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the vgf gene in the golden hamster suprachiasmatic nucleus by light and by the circadian clock.
    Wisor JP; Takahashi JS
    J Comp Neurol; 1997 Feb; 378(2):229-38. PubMed ID: 9120062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suprachiasmatic and paraventricular control of photoperiodism in Siberian hamsters.
    Bittman EL; Bartness TJ; Goldman BD; DeVries GJ
    Am J Physiol; 1991 Jan; 260(1 Pt 2):R90-101. PubMed ID: 1899544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian and seasonal control of neuroendocrine-gonadal activity.
    Turek FW; Losee-Olson S; Swann JM; Horwath K; Van Cauter E; Milette JJ
    J Steroid Biochem; 1987; 27(1-3):573-9. PubMed ID: 3695495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.