These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6199708)

  • 41. Induction of the eye lens.
    McAvoy JW
    Differentiation; 1980; 17(3):137-49. PubMed ID: 7004973
    [No Abstract]   [Full Text] [Related]  

  • 42. Differences in the histogenesis and keratin expression of avian extraembryonic ectoderm and endoderm recombined with dermis.
    Haake AR; Sawyer RH
    Dev Biol; 1986 Feb; 113(2):295-304. PubMed ID: 2419184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The appearance and extension of neural differentiation tendencies in the neurectoderm of the early chick embryo.
    Rao BR
    Wilhelm Roux Arch Entwickl Mech Org; 1968 Jun; 160(2):187-236. PubMed ID: 28304523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Apoptosis in the lens anlage of the heritable lens aplastic mouse (lap mouse).
    Aso S; Tashiro M; Baba R; Sawaki M; Noda S; Fujita M
    Teratology; 1998 Aug; 58(2):44-53. PubMed ID: 9787405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Compatibility of chick embryo eye anlagen with the ectoderm of the early amphibian gastrula in vitro].
    Mikhaĭlov AT
    Ontogenez; 1984; 15(5):542-7. PubMed ID: 6334262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative analysis of protein synthesis in mouse embryos. II: Differentiation of endoderm, mesoderm, and ectoderm.
    Latham KE; Beddington RS; Solter D; Garrels JI
    Mol Reprod Dev; 1993 Jun; 35(2):140-50. PubMed ID: 8318219
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capacity to form choroid plexus-like cells in vitro is restricted to specific regions of the mouse neural ectoderm.
    Thomas T; Dziadek M
    Development; 1993 Jan; 117(1):253-62. PubMed ID: 8223250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The matured eye of Xenopus laevis tadpoles produces factors that elicit a lens-forming response in embryonic ectoderm.
    Henry JJ; Mittleman JM
    Dev Biol; 1995 Sep; 171(1):39-50. PubMed ID: 7556906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differentiation versus proliferation of transgenic mouse lens cells expressing polyoma large T antigen: evidence for regulation by an endogenous growth factor.
    Griep AE; Westphal H
    New Biol; 1990 Aug; 2(8):727-38. PubMed ID: 2178003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Transplantation of the cell nuclei of the crystalline lens anlage into mouse zygotes and the expression of alpha-crystallin genes].
    Larionov OA; Platonov ES; Mironova OV; Vasil'eva IA; Koniukhov BV
    Zh Obshch Biol; 1988; 49(2):263-70. PubMed ID: 3400346
    [No Abstract]   [Full Text] [Related]  

  • 51. Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation.
    Kondoh H; Uchikawa M; Kamachi Y
    Int J Dev Biol; 2004; 48(8-9):819-27. PubMed ID: 15558474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme.
    Shigetani Y; Nobusada Y; Kuratani S
    Dev Biol; 2000 Dec; 228(1):73-85. PubMed ID: 11087627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Synthesis of a lens-specific antigen (delta-crystallin) in rudimentary chicken adenohypophysis].
    Fedtsova NG; Minina TA; Barabanov VM
    Biull Eksp Biol Med; 1981 Sep; 92(9):314-6. PubMed ID: 6794670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunofluorescence studies on induction and differentiation of the chicken eye lens.
    Ikeda A; Zwaan J
    Invest Ophthalmol; 1966 Aug; 5(4):402-12. PubMed ID: 5330328
    [No Abstract]   [Full Text] [Related]  

  • 55. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development.
    Klimova L; Kozmik Z
    Development; 2014 Mar; 141(6):1292-302. PubMed ID: 24523460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inductive processes leading to inner ear formation during Xenopus development.
    Gallagher BC; Henry JJ; Grainger RM
    Dev Biol; 1996 Apr; 175(1):95-107. PubMed ID: 8608872
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The pattern of protein and glycoprotein synthesis in presumptive lens and non-lens ectoderm of the chicken embryo.
    Sullivan CH; Hart JP; Kramer J
    Rouxs Arch Dev Biol; 1991 Jun; 200(1):38-44. PubMed ID: 28305916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biochemical investigation of lens induction in vitro. II. Demonstration of the induction substance.
    Van Der Starre H
    Acta Morphol Neerl Scand; 1978 May; 16(2):109-20. PubMed ID: 676800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organ culture and immunohistochemistry of the genetically malformed lens, in eye lens obsolescence, Elo, of the mouse.
    Watanabe K; Fujisawa H; Oda S; Kameyama Y
    Exp Eye Res; 1980 Dec; 31(6):683-9. PubMed ID: 7011824
    [No Abstract]   [Full Text] [Related]  

  • 60. IGF-1 enhancement of FGF-induced lens fiber differentiation in rats of different ages.
    Richardson NA; Chamberlain CG; McAvoy JW
    Invest Ophthalmol Vis Sci; 1993 Nov; 34(12):3303-12. PubMed ID: 8225865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.