These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6200119)

  • 1. Mechanisms of toxic injury to isolated hepatocytes by 1-naphthol.
    Doherty MD; Cohen GM; Smith MT
    Biochem Pharmacol; 1984 Feb; 33(4):543-9. PubMed ID: 6200119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes.
    Miller MG; Rodgers A; Cohen GM
    Biochem Pharmacol; 1986 Apr; 35(7):1177-84. PubMed ID: 2421729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of toxicity of 2- and 5-hydroxy-1,4-naphthoquinone; absence of a role for redox cycling in the toxicity of 2-hydroxy-1,4-naphthoquinone to isolated hepatocytes.
    d'Arcy Doherty M; Rodgers A; Cohen GM
    J Appl Toxicol; 1987 Apr; 7(2):123-9. PubMed ID: 3624767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome P-450 dependent metabolic activation of 1-naphthol to naphthoquinones and covalent binding species.
    Doherty MA; Makowski R; Gibson GG; Cohen GM
    Biochem Pharmacol; 1985 Jul; 34(13):2261-7. PubMed ID: 4015675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of active oxygen species following activation of 1-naphthol, 1,2- and 1,4-naphthoquinone by rat liver microsomes.
    Thornalley PJ; Doherty MD; Smith MT; Bannister JV; Cohen GM
    Chem Biol Interact; 1984 Feb; 48(2):195-206. PubMed ID: 6321045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic activation of 1-naphthol by rat liver microsomes to 1,4-naphthoquinone and covalent binding species.
    Doherty MD; Cohen GM
    Biochem Pharmacol; 1984 Oct; 33(20):3201-8. PubMed ID: 6487366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of 1-naphthol to naphthoquinone metabolites by rat liver microsomes: demonstration by high-performance liquid chromatography with reductive electrochemical detection.
    Fluck DS; Rappaport SM; Eastmond DA; Smith MT
    Arch Biochem Biophys; 1984 Dec; 235(2):351-8. PubMed ID: 6517596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their cytotoxicity.
    Powis G; See KL; Santone KS; Melder DC; Hodnett EM
    Biochem Pharmacol; 1987 Aug; 36(15):2473-9. PubMed ID: 2440444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cytotoxicities of 1,4-naphthoquinone and hydroxylated 1,4-naphthoquinones to replicating cells.
    Babich H; Stern A
    J Appl Toxicol; 1993; 13(5):353-8. PubMed ID: 7505009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of trenimon-induced cytotoxicity by DT-diaphorase in isolated rat hepatocytes under aerobic versus hypoxic conditions.
    Silva JM; Rao DN; O'Brien PJ
    Cancer Res; 1992 Jun; 52(11):3015-21. PubMed ID: 1375532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells.
    Thor H; Smith MT; Hartzell P; Bellomo G; Jewell SA; Orrenius S
    J Biol Chem; 1982 Oct; 257(20):12419-25. PubMed ID: 6181068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dicoumarol on cytotoxicity caused by tert-butylhydroquinone in isolated rat hepatocytes.
    Nakagawa Y
    Toxicol Lett; 1996 Feb; 84(2):63-8. PubMed ID: 8614906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors.
    Croera C; Ferrario D; Gribaldo L
    Toxicol In Vitro; 2008 Sep; 22(6):1555-61. PubMed ID: 18602459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of oxidative processes in the cytotoxicity of substituted 1,4-naphthoquinones in isolated hepatocytes.
    Ross D; Thor H; Threadgill MD; Sandy MS; Smith MT; Moldéus P; Orrenius S
    Arch Biochem Biophys; 1986 Aug; 248(2):460-6. PubMed ID: 3017211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of 1-naphthol by tyrosinase.
    Doherty M D; Cohen GM; Gant TW; Naish S; Riley PA
    Biochem Pharmacol; 1985 Sep; 34(17):3167-72. PubMed ID: 3929786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of modulation of tissue activities of DT-diaphorase on the toxicity of 2,3-dimethyl-1,4-naphthoquinone to rats.
    Munday R; Smith BL; Munday CM
    Chem Biol Interact; 2001 Mar; 134(1):87-100. PubMed ID: 11248224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and identification of naphthoquinone glutathione conjugates following microsomal metabolism of 1-naphthol.
    Miller MG; Powell J; Cohen GM
    Adv Exp Med Biol; 1986; 197():391-7. PubMed ID: 3766270
    [No Abstract]   [Full Text] [Related]  

  • 19. Generation of low-level chemiluminescence during the metabolism of 1-naphthol by rat liver microsomes.
    Wefers H; Komai T; Sies H
    Biochem Pharmacol; 1984 Dec; 33(24):4081-5. PubMed ID: 6210092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes.
    Ollinger K; Brunmark A
    J Biol Chem; 1991 Nov; 266(32):21496-503. PubMed ID: 1718980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.