These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6200138)

  • 21. Iron-mediated oxidative DNA damage detected by fluorometric analysis of DNA unwinding in isolated rat liver nuclei.
    Sahu SC; Washington MC
    Biomed Environ Sci; 1991 Sep; 4(3):232-41. PubMed ID: 1764212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study of the interactions of bleomycin with nuclei and purified DNA.
    Ciriolo MR; Peisach J; Magliozzo RS
    J Biol Chem; 1989 Jan; 264(3):1443-9. PubMed ID: 2463984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased oxygen radical-dependent inactivation of metabolic enzymes by liver microsomes after chronic ethanol consumption.
    Dicker E; Cederbaum AI
    FASEB J; 1988 Oct; 2(13):2901-6. PubMed ID: 3169467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidation of ethylene glycol to formaldehyde by rat liver microsomes. Role of cytochrome P-450 and reactive oxygen species.
    Kukiełka E; Cederbaum AI
    Drug Metab Dispos; 1991; 19(6):1108-15. PubMed ID: 1687018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactoferrin-mediated formation of oxygen radicals by NADPH-cytochrome P-450 reductase system.
    Nakamura M
    J Biochem; 1990 Mar; 107(3):395-9. PubMed ID: 1692825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.
    Kukiełka E; Cederbaum AI
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):361-7. PubMed ID: 7733870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NADPH-dependent formation of 15- and 12-hydroxyeicosatrienoic acid from arachidonic acid by rat epidermal microsomes.
    Van Wauwe J; Coene MC; Van Nyen G; Cools W; Goossens J; Le Jeune L; Lauwers W; Janssen PA
    Eicosanoids; 1991; 4(3):155-63. PubMed ID: 1772688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of cytochrome P-450-448 inhibitors on the binding of benzo(a)pyrene and derivatives to DNA upon microsomal activation.
    Liu WI; Sloane NH
    Xenobiotica; 1979 Mar; 9(3):165-71. PubMed ID: 38576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Interaction of the Cu(Lys)2 complex with the NADPH-dependent microsomal electron transport system and microsomal membrane].
    Rumiantseva GV; Vaĭner LM
    Biokhimiia; 1982 Jun; 47(6):921-30. PubMed ID: 6810958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The NADPH- and iron-dependent lipid peroxidation in human placental microsomes.
    Milczarek R; Sokolowska E; Hallmann A; Klimek J
    Mol Cell Biochem; 2007 Jan; 295(1-2):105-11. PubMed ID: 16896536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytochrome P-450- and flavin-containing monooxygenase-catalyzed formation of the carcinogen N-hydroxy-2-aminofluorene and its covalent binding to nuclear DNA.
    Frederick CB; Mays JB; Ziegler DM; Guengerich FP; Kadlubar FF
    Cancer Res; 1982 Jul; 42(7):2671-7. PubMed ID: 7083159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration that the temporary sequestering of adventitious iron accounts for the inhibition of microsomal lipid peroxidation by bleomycin A2.
    Trush MA
    Res Commun Chem Pathol Pharmacol; 1982 Jul; 37(1):21-31. PubMed ID: 6181545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adriamycin-enhanced membrane lipid peroxidation in isolated rat nuclei.
    Mimnaugh EG; Kennedy KA; Trush MA; Sinha BK
    Cancer Res; 1985 Jul; 45(7):3296-304. PubMed ID: 2988766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of alpha-tocopherol on the microsomal lipid peroxidation induced by doxorubicin: influence of ascorbic acid.
    Geetha A; Catherine J; Shyamala Devi CS
    Indian J Physiol Pharmacol; 1989; 33(1):53-8. PubMed ID: 2737747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of the ketoxime acetoxime to nitric oxide by oxygen radical-generating systems.
    Caro AA; Cederbaum AI; Stoyanovsky DA
    Nitric Oxide; 2001 Aug; 5(4):413-24. PubMed ID: 11485379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.