BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 620018)

  • 1. Proton electrochemical gradient and phosphate potential in mitochondria.
    Azzone GF; Pozzan T; Massari S
    Biochim Biophys Acta; 1978 Feb; 501(2):307-16. PubMed ID: 620018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton electrochemical gradient and rate of controlled respiration in mitochondria.
    Azzone GF; Pozzan T; Massari S; Bragadin M
    Biochim Biophys Acta; 1978 Feb; 501(2):296-306. PubMed ID: 620017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton electrochemical gradient and phosphate potential in submitochondrial particles.
    Azzone GF; Pozzan T; Viola E; Arslan P
    Biochim Biophys Acta; 1978 Feb; 501(2):317-29. PubMed ID: 23158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation].
    Samartsev VN; Kozhina OV; Polishchuk LS
    Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria.
    Holian A; Wilson DF
    Biochemistry; 1980 Sep; 19(18):4213-21. PubMed ID: 7417402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase.
    Herweijer MA; Berden JA; Slater EC
    Biochim Biophys Acta; 1986 Apr; 849(2):276-87. PubMed ID: 2421768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1975 Jul; 250(14):5330-5. PubMed ID: 237916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate transport, membrane potential, and movements of calcium in rat liver mitochondria.
    Ligeti E; Lukács GL
    J Bioenerg Biomembr; 1984 Apr; 16(2):101-13. PubMed ID: 6536672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy coupling between H+-generating and H+-consuming pumps. Ratio between output and input forces.
    Petronilli V; Pietrobon D; Zoratti M; Azzone GF
    Eur J Biochem; 1986 Mar; 155(2):423-31. PubMed ID: 3007129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncouplers of oxidative phosphorylation.
    Terada H
    Environ Health Perspect; 1990 Jul; 87():213-8. PubMed ID: 2176586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in isolated rat-liver mitochondria.
    Sánchez Olavarría J; Lambers A; van Dam K
    Biochim Biophys Acta; 1988 Oct; 936(1):108-13. PubMed ID: 2460134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Coupling effect of 6-ketocholestanol on mitochondria, hydrolyzing adenosine triphosphate in the presence of uncoupling agents-protonophores].
    Mansurova SE; Simonian RA; Skulachev VP; Starkov AA
    Mol Biol (Mosk); 1995; 29(6):1376-83. PubMed ID: 8592507
    [No Abstract]   [Full Text] [Related]  

  • 20. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process.
    Passarella S; Atlante A; Quagliariello E
    Eur J Biochem; 1990 Oct; 193(1):221-7. PubMed ID: 2226441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.