BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 620018)

  • 21. Phosphate transport in membrane vesicles from Escherichia coli.
    Konings WN; Rosenberg H
    Biochim Biophys Acta; 1978 Apr; 508(2):370-8. PubMed ID: 346064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formations of electrochemical proton gradient and adenosine triphosphate in proteoliposomes containing purified adenosine triphosphatase and bacteriorhodopsin.
    Sone N; Takeuchi Y; Yoshida M; Ohno K
    J Biochem; 1977 Dec; 82(6):1751-8. PubMed ID: 23379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Ion transport and electrical potential of mitochondrial membranes].
    Liberman EA; Topaly VP; Tsofina LM; Iasaĭtis AA; Skulachev VP
    Biokhimiia; 1969; 34(5):1083-7. PubMed ID: 5364621
    [No Abstract]   [Full Text] [Related]  

  • 25. On the relationship between rate of ATP synthesis and H+ electrochemical gradient in rat-liver mitochondria.
    Zoratti M; Pietrobon D; Azzone GF
    Eur J Biochem; 1982 Sep; 126(3):443-51. PubMed ID: 6291930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation.
    Moysés DN; Barrabin H
    Biochim Biophys Acta; 2004 Jun; 1656(2-3):96-103. PubMed ID: 15178471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamics of oxidative phosphorylation in bovine heart submitochondrial particles.
    Thayer WS; Tu YS; Hinkle PC
    J Biol Chem; 1977 Dec; 252(23):8455-8. PubMed ID: 200612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.
    Porter RK; Brand MD
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respiratory control and the proton electrochemical gradient in mitochondria.
    Padan E; Rottenberg H
    Eur J Biochem; 1973 Dec; 40(2):431-7. PubMed ID: 4131256
    [No Abstract]   [Full Text] [Related]  

  • 31. [Kinetics of ATP synthesis in incomplete uncoupling indicate the existence of a threshold potential for the functional rearrangement of H+-ATpase].
    Bronnikov GE
    Dokl Akad Nauk SSSR; 1986; 290(2):476-80. PubMed ID: 2876854
    [No Abstract]   [Full Text] [Related]  

  • 32. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes.
    Azzone GF; Massari S; Pozzan T
    Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncouplers and the molecular mechanism of uncoupling in mitochondria.
    Kessler RJ; Vande Zande H; Tyson CA; Blondin GA; Fairfield J; Glasser P; Green DE
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2241-5. PubMed ID: 142250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP synthesis and electrical membrane potential in mitochondria.
    Rottenberg H
    Eur J Biochem; 1970 Jul; 15(1):22-8. PubMed ID: 5489836
    [No Abstract]   [Full Text] [Related]  

  • 35. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.
    Brand MD; Reynafarje B; Lehninger AL
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):437-41. PubMed ID: 1061146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium.
    Bakker EP; Rottenberg H; Caplan SR
    Biochim Biophys Acta; 1976 Sep; 440(3):557-72. PubMed ID: 9137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for mitochondrial localization of N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea in human colon adenocarcinoma cells.
    Houghton PJ; Bailey FC; Houghton JA; Murti KG; Howbert JJ; Grindey GB
    Cancer Res; 1990 Feb; 50(3):664-8. PubMed ID: 2297707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-dependent changes in proton:substrate stoichiometries during active transport in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Sep; 16(19):4270-5. PubMed ID: 20136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of adenosine triphosphate in respiration-inhibited submitochondrial particles induced by microsecond electric pulses.
    Teissie J; Knox BE; Tsong TY; Wehrle J
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7473-7. PubMed ID: 6950390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.