These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6200183)

  • 21. The topographic organization of spinal afferents to the lateral reticular nucleus of the cat.
    Künzle H
    J Comp Neurol; 1973 May; 149(1):103-15. PubMed ID: 4700511
    [No Abstract]   [Full Text] [Related]  

  • 22. Cerebellar decussation of fibres from the nucleus reticularis tegmenti pontis in the brain of the albino rat.
    Brown PA; Carman JB
    Experientia; 1978 Aug; 34(8):1039-41. PubMed ID: 700019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat.
    Jones BE; Yang TZ
    J Comp Neurol; 1985 Dec; 242(1):56-92. PubMed ID: 2416786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems.
    Newman DB; Cruce WL; Bruce LL
    J Comp Neurol; 1983 Mar; 215(1):17-32. PubMed ID: 6853763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinocerebellar tract neurons with axons passing through the inferior or superior cerebellar peduncles. A retrograde horseradish peroxidase study in rats.
    Kitamura T; Yamada J
    Brain Behav Evol; 1989; 34(3):133-42. PubMed ID: 2590830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Localization and properties of reticulospinal neurons, the axons of which course through the dorsolateral divisions of the lateral spinal cord funiculi].
    Smirnov KA; Potekhina IL
    Neirofiziologiia; 1974 May; 6(3):266-72. PubMed ID: 4836635
    [No Abstract]   [Full Text] [Related]  

  • 27. Diencephalic mechanisms of pain sensation.
    Albe-Fessard D; Berkley KJ; Kruger L; Ralston HJ; Willis WD
    Brain Res; 1985 Aug; 356(3):217-96. PubMed ID: 3896408
    [No Abstract]   [Full Text] [Related]  

  • 28. Projections of nucleus caudalis and spinal cord to brainstem and diencephalon in the hedgehog (Erinaceus europaeus and Paraechinus aethiopicus): a degeneration study.
    Ring G; Ganchrow D
    J Comp Neurol; 1983 May; 216(2):132-51. PubMed ID: 6863599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon.
    Katter JT; Dado RJ; Kostarczyk E; Giesler GJ
    J Neurophysiol; 1996 Jun; 75(6):2581-605. PubMed ID: 8793765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distribution and origin of serotonin immunoreactivity in the rat cerebellum.
    Bishop GA; Ho RH
    Brain Res; 1985 Apr; 331(2):195-207. PubMed ID: 3986565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation.
    Basbaum AI; Fields HL
    J Comp Neurol; 1979 Oct; 187(3):513-31. PubMed ID: 489790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography.
    Bobillier P; Seguin S; Degueurce A; Lewis BD; Pujol JF
    Brain Res; 1979 Apr; 166(1):1-8. PubMed ID: 421148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reevaluation of projections from the mesencephalic trigeminal nucleus to the medulla and spinal cord: new projections. a combined retrograde and anterograde horseradish peroxidase study.
    Ruggiero DA; Ross CA; Kumada M; Reis DJ
    J Comp Neurol; 1982 Apr; 206(3):278-92. PubMed ID: 7085934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study of cerebellar connections in the turtle using the technic of axonal transport of horseradish peroxidase].
    Belekhova MG; Gaidaenko GV
    Neirofiziologiia; 1985; 17(6):786-94. PubMed ID: 4088383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Primary glossopharyngeal and vagal afferent projection into the cerebellum in the dog. An experimental study with toluidine blue and silver impregnation methods.
    Sobusiak T; Zimny R; Matlosz Z
    J Hirnforsch; 1971; 13(1):117-34. PubMed ID: 4115136
    [No Abstract]   [Full Text] [Related]  

  • 36. New insights into the organization of the shark brain.
    Ebbesson SO
    Comp Biochem Physiol A Comp Physiol; 1972 May; 42(1):121-9. PubMed ID: 4402701
    [No Abstract]   [Full Text] [Related]  

  • 37. The brain of the lamprey in a comparative perspective.
    Nieuwenhuys R
    Ann N Y Acad Sci; 1977 Sep; 299():97-145. PubMed ID: 280225
    [No Abstract]   [Full Text] [Related]  

  • 38. Diencephalic distributions of ascending reticular systems.
    Robertson RT; Lynch GS; Thompson RF
    Brain Res; 1973 Jun; 55(2):309-22. PubMed ID: 4714006
    [No Abstract]   [Full Text] [Related]  

  • 39. Projections of the subnucleus caudalis of the trigeminal nucleus in the sheep.
    Roberts PA; Matzke HA
    J Comp Neurol; 1971 Mar; 141(3):273-82. PubMed ID: 4101339
    [No Abstract]   [Full Text] [Related]  

  • 40. Efferent projections of the cat oculomotor reticular omnipause neuron region: an autoradiographic study.
    Langer TP; Kaneko CR
    J Comp Neurol; 1983 Jul; 217(3):288-306. PubMed ID: 6886055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.