These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 6200185)
1. Increased transport of 3,4-dihydroxyphenylacetic acid from brain during performance of operant behavior in the rat. Heffner TG; Vosmer G; Seiden LS Brain Res; 1984 Feb; 293(1):85-91. PubMed ID: 6200185 [TBL] [Abstract][Full Text] [Related]
2. Effect of probenecid on endogenous and exogenous 3,4-dihydroxyphenylacetic acid and homovanillic acid in the rat brain. Broch OJ Eur J Pharmacol; 1976 Sep; 39(1):33-40. PubMed ID: 964303 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous determination of the formation rate of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in various rat brain areas. Westerink BH; Spaan SJ Brain Res; 1982 Dec; 252(2):239-45. PubMed ID: 7150951 [TBL] [Abstract][Full Text] [Related]
4. Role of type A and B monoamine oxidase on the formation of 3,4-dihydroxyphenylacetic acid (DOPAC) in tissues from the brain of the rat. Garrett MC; Soares-da-Silva P Neuropharmacology; 1990 Oct; 29(10):875-9. PubMed ID: 2123970 [TBL] [Abstract][Full Text] [Related]
5. Effect of various centrally acting drugs on the efflux of dopamine metabolites from the rat brain. Westerink BH; Kikkert RJ J Neurochem; 1986 Apr; 46(4):1145-52. PubMed ID: 3950621 [TBL] [Abstract][Full Text] [Related]
6. Dopamine, noradrenaline and 3,4-dihydroxyphenylacetic acid (DOPAC) levels of individual brain nuclei, effects of haloperidol and pargyline. Fekete MI; Herman JP; Kanyicska B; Palkovits M J Neural Transm; 1979; 45(3):207-18. PubMed ID: 479873 [TBL] [Abstract][Full Text] [Related]
7. 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indicators of central dopaminergic activity. Bacopoulos NG; Hattox SE; Roth RH Eur J Pharmacol; 1979 Jun; 56(3):225-36. PubMed ID: 477719 [TBL] [Abstract][Full Text] [Related]
8. Acid metabolites of monoamines in avian brain; effects of probenecid and reserpine. Ahtee L; Sharman DF; Vogt M Br J Pharmacol; 1970 Jan; 38(1):72-85. PubMed ID: 5413292 [TBL] [Abstract][Full Text] [Related]
9. Distribution of norepinephrine, epinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in dog brain. Mefford IN; Foutz A; Noyce N; Jurik SM; Handen C; Dement WC; Barchas JD Brain Res; 1982 Mar; 236(2):339-49. PubMed ID: 6175382 [TBL] [Abstract][Full Text] [Related]
10. Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Roth RH; Murrin LC; Walters JR Eur J Pharmacol; 1976 Mar; 36(1):163-71. PubMed ID: 177297 [TBL] [Abstract][Full Text] [Related]
11. Differential effect of psychotropic drugs on dihydroxyphenylacetic acid (DOPAC) in the rat substantia nigra and caudate nucleus. Fadda F; Argiolas A; Stefanini E; Gessa GL Life Sci; 1977 Aug; 21(3):411-7. PubMed ID: 895373 [No Abstract] [Full Text] [Related]
12. Epinephrine accumulation in rat brain after chronic administration of pargyline and LY 51641--comparison with other brain amines. Mefford IN; Roth KA; Jurik SM; Collman V; McIntire S; Tolbert L; Barchas JD Brain Res; 1985 Jul; 339(2):342-5. PubMed ID: 2411347 [TBL] [Abstract][Full Text] [Related]
13. 3,4-Dihydroxyphenylacetic acid concentrations in the intermediate lobe and neural lobe of the posterior pituitary gland as an index of tuberohypophysial dopaminergic neuronal activity. Lindley SE; Gunnet JW; Lookingland KJ; Moore KE Brain Res; 1990 Jan; 506(1):133-8. PubMed ID: 2302550 [TBL] [Abstract][Full Text] [Related]
14. Determination of conjugated monoamine metabolites in brain tissue. Swahn CG; Wiesel FA J Neural Transm; 1976; 39(4):281-90. PubMed ID: 993790 [TBL] [Abstract][Full Text] [Related]
15. Correlation between high-performance liquid chromatography and automated fluorimetric methods for the determination of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid in nervous tissue and cerebrospinal fluid. Westerink BH J Chromatogr; 1982 Dec; 233():69-77. PubMed ID: 6186680 [TBL] [Abstract][Full Text] [Related]
16. Effects of chlorpromazine on the metabolism of catecholamines in dog brain. Guldberg HC; Yates CM Br J Pharmacol; 1969 Jul; 36(3):535-48. PubMed ID: 5789808 [TBL] [Abstract][Full Text] [Related]
17. Long-term decreases in striatal dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid after a single injection of amphetamine in iprindole-treated rats: time course and time-dependent interactions with amfonelic acid. Steranka LR Brain Res; 1982 Feb; 234(1):123-36. PubMed ID: 7059818 [TBL] [Abstract][Full Text] [Related]
18. Measurement of metabolites of dopamine and 5-hydroxytryptamine in cerebroventricular perfusates of unanesthetized, freely-moving rats: selective effects of drugs. Nielsen JA; Moore KE Pharmacol Biochem Behav; 1982 Jan; 16(1):131-7. PubMed ID: 6173884 [TBL] [Abstract][Full Text] [Related]
19. Determination of dopamine, norepinephrine, serotonin and their major metabolic products in rat brain by reverse-phase ion-pair high performance liquid chromatography with electrochemical detection. Kotake C; Heffner T; Vosmer G; Seiden L Pharmacol Biochem Behav; 1985 Jan; 22(1):85-9. PubMed ID: 2579406 [TBL] [Abstract][Full Text] [Related]
20. Neonatal lesions of the left entorhinal cortex affect dopamine metabolism in the rat brain. Uehara T; Tanii Y; Sumiyoshi T; Kurachi M Brain Res; 2000 Mar; 860(1-2):77-86. PubMed ID: 10727625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]