These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 620020)
1. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020 [TBL] [Abstract][Full Text] [Related]
2. Effects of temperature on the transport of galactose in human erythrocytes. Ginsburg H; Yeroushalmy S J Physiol; 1978 Sep; 282():399-417. PubMed ID: 722542 [TBL] [Abstract][Full Text] [Related]
3. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes. Ginsburg H; Ram D Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239 [TBL] [Abstract][Full Text] [Related]
4. L-Leucine transport in human red blood cells: a detailed kinetic analysis. Rosenberg R J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478 [TBL] [Abstract][Full Text] [Related]
5. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier. Yayon A; Ginsburg H Biochim Biophys Acta; 1982 Apr; 686(2):197-203. PubMed ID: 7082662 [TBL] [Abstract][Full Text] [Related]
6. Zero-trans and infinite-cis uptake of galactose in human erythrocytes. Ginsburg H; Stein WD Biochim Biophys Acta; 1975 Mar; 382(3):353-68. PubMed ID: 1125238 [TBL] [Abstract][Full Text] [Related]
7. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Baker GF; Naftalin RJ Biochim Biophys Acta; 1979 Feb; 550(3):474-84. PubMed ID: 420829 [TBL] [Abstract][Full Text] [Related]
8. The human erythrocyte ghost: a new experimental model for studying adenosine transport. Fernandez-Rivera-Rio L; Gonzalez-Garcia MR Arch Biochem Biophys; 1985 Jul; 240(1):246-56. PubMed ID: 4015103 [TBL] [Abstract][Full Text] [Related]
9. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Eilam Y Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144 [TBL] [Abstract][Full Text] [Related]
10. A kinetic analysis of L-tryptophan transport in human red blood cells. Rosenberg R Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397 [TBL] [Abstract][Full Text] [Related]
11. The triiodothyronine carrier of rat erythrocytes: asymmetry and mechanisms of trans-inhibition. Osty J; Zhou Y; Chantoux F; Francon J; Blondeau JP Biochim Biophys Acta; 1990 Jan; 1051(1):46-51. PubMed ID: 2297539 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C. Wheeler TJ Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899 [TBL] [Abstract][Full Text] [Related]
13. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells. Weiser MB; Razin M; Stein WD Biochim Biophys Acta; 1983 Jan; 727(2):379-88. PubMed ID: 6838879 [TBL] [Abstract][Full Text] [Related]
14. An analysis of the adequacy of the asymmetric carrier model for sugar transport. Foster DM; Jacquez JA Biochim Biophys Acta; 1976 Jun; 436(1):210-21. PubMed ID: 1276212 [TBL] [Abstract][Full Text] [Related]
15. Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers. Boni LT; Stewart TP; Alderfer JL; Hui SW J Membr Biol; 1981; 62(1-2):71-7. PubMed ID: 7196957 [TBL] [Abstract][Full Text] [Related]
16. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer. Carruthers A; Melchior DL Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982 [TBL] [Abstract][Full Text] [Related]
17. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL; Carruthers A Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504 [TBL] [Abstract][Full Text] [Related]
18. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry and differential mobility of loaded and empty carrier. Plagemann PG; Wohlhueter RM; Erbe J J Biol Chem; 1982 Oct; 257(20):12069-74. PubMed ID: 7118930 [TBL] [Abstract][Full Text] [Related]
19. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
20. Effects of anesthetic alcohols on membrane transport processes in human erythrocytes. Kutchai H; Chandler LH; Geddis LM Biochim Biophys Acta; 1980 Aug; 600(3):870-81. PubMed ID: 7407149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]