These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 620020)
21. Nucleoside transporter of pig erythrocytes. Kinetic properties, isolation and reaction with nitrobenzylthioinosine and dipyridamole. Woffendin C; Plagemann PG Biochim Biophys Acta; 1987 Sep; 903(1):18-30. PubMed ID: 3651452 [TBL] [Abstract][Full Text] [Related]
22. A method to distinguish between pore and carrier kinetics applied to urea transport across the erythrocyte membrane. Yousef LW; Macey RI Biochim Biophys Acta; 1989 Sep; 984(3):281-8. PubMed ID: 2775778 [TBL] [Abstract][Full Text] [Related]
23. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model. Naftalin RJ; Rist RJ Biochim Biophys Acta; 1994 Apr; 1191(1):65-78. PubMed ID: 8155685 [TBL] [Abstract][Full Text] [Related]
24. Adenine and hypoxanthine transport in human erythrocytes: distinct substrate effects on carrier mobility. Kraupp M; Marz R; Prager G; Kommer W; Razavi M; Baghestanian M; Chiba P Biochim Biophys Acta; 1991 Nov; 1070(1):157-62. PubMed ID: 1751522 [TBL] [Abstract][Full Text] [Related]
25. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation. Plagemann PG; Wohlhueter RM Biochim Biophys Acta; 1984 Nov; 778(1):176-84. PubMed ID: 6498185 [TBL] [Abstract][Full Text] [Related]
26. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. Krupka RM J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758 [TBL] [Abstract][Full Text] [Related]
27. Kinetic independence between red cell anion exchange and urea transport. Fröhlich O; Jones SC Biochim Biophys Acta; 1988 Sep; 943(3):531-4. PubMed ID: 3415994 [TBL] [Abstract][Full Text] [Related]
28. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. De Bruijne AW; Vreeburg H; Van Steveninck J Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216 [TBL] [Abstract][Full Text] [Related]
29. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. Wheeler TJ; Hinkle PC J Biol Chem; 1981 Sep; 256(17):8907-14. PubMed ID: 6455434 [TBL] [Abstract][Full Text] [Related]
30. A kinetic analysis of hexose transport in cultured human lymphocytes (IM-9). Rees WD; Gliemann J Biochim Biophys Acta; 1985 Jan; 812(1):98-106. PubMed ID: 4038456 [TBL] [Abstract][Full Text] [Related]
31. The choline transport system of erythrocytes distribution of the free carrier in the membrane. Krupka RM; Devés R Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171 [TBL] [Abstract][Full Text] [Related]
32. Effects of insulin receptor down-regulation on hexose transport in human erythrocytes. Dustin ML; Jacobson GR; Peterson SW J Biol Chem; 1984 Nov; 259(22):13660-3. PubMed ID: 6389533 [TBL] [Abstract][Full Text] [Related]
33. Evidence that the uptake of tri-iodo-L-thyronine by human erythrocytes is carrier-mediated but not energy-dependent. Docter R; Krenning EP; Bos G; Fekkes DF; Hennemann G Biochem J; 1982 Oct; 208(1):27-34. PubMed ID: 7159396 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose. May JM Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762 [TBL] [Abstract][Full Text] [Related]
35. The kinetics of glucose transport in human red blood cells. Lowe AG; Walmsley AR Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948 [TBL] [Abstract][Full Text] [Related]
36. Thyroid hormone concentrative uptake in rat erythrocytes. Involvement of the tryptophan transport system T in countertransport of tri-iodothyronine and aromatic amino acids. Zhou Y; Samson M; Francon J; Blondeau JP Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):81-6. PubMed ID: 1731770 [TBL] [Abstract][Full Text] [Related]
37. Concentration dependence of the chloride selfexchange and homoexchange fluxes in human red cell ghosts. Hautmann M; Schnell KF Pflugers Arch; 1985 Oct; 405(3):193-201. PubMed ID: 4069977 [TBL] [Abstract][Full Text] [Related]
38. [Elevated galactose transport into cells as the cause of development of hereditary galactosemia in rats]. Solov'eva NA; Ginzburg EKh; Kazarinova FS; Kandaurov VV; Salganik RI Vopr Med Khim; 1987; 33(6):41-7. PubMed ID: 3445543 [TBL] [Abstract][Full Text] [Related]
39. The transport of L-leucine in human erythrocytes: a new kinetic analysis. Hoare DG J Physiol; 1972 Mar; 221(2):311-29. PubMed ID: 5020980 [TBL] [Abstract][Full Text] [Related]
40. Mobility of nucleoside transporter of human erythrocytes differs greatly when loaded with different nucleosides. Plagemann PG; Aran JM; Wohlhueter RM; Woffendin C Biochim Biophys Acta; 1990 Feb; 1022(1):103-9. PubMed ID: 2302397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]