These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 620020)

  • 61. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data.
    Miller DM
    Biophys J; 1968 Nov; 8(11):1339-52. PubMed ID: 5696216
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cyclic AMP transport in human erythrocyte ghosts.
    Holman GD
    Biochim Biophys Acta; 1978 Mar; 508(1):174-83. PubMed ID: 204349
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reconstitution of glucose transport using human erythrocyte band 3.
    Shelton RL; Langdon RG
    Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus. Comparison of transport properties of whole cells and membrane vesicles.
    Inui KI; Tillotson LG; Isselbacher KJ
    Biochim Biophys Acta; 1980 Jun; 598(3):616-27. PubMed ID: 6248112
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.
    Devés R; Krupka RM
    J Membr Biol; 1987; 99(1):13-23. PubMed ID: 3430573
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Zero-trans uptake of L-tryptophan in the human erythrocyte.
    Rosenberg R
    J Neural Transm Suppl; 1979; (15):153-60. PubMed ID: 290753
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism.
    Naftalin RJ
    Biochim Biophys Acta; 1988 Dec; 946(2):431-8. PubMed ID: 3207758
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interaction of 2'-halogeno-2'-deoxyuridines with the human erythrocyte nucleoside transport mechanism.
    Gati WP; Knaus EE; Wiebe LI
    Mol Pharmacol; 1983 Jan; 23(1):146-52. PubMed ID: 6223203
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kinetics of volume-sensitive K transport in human erythrocytes: evidence for asymmetry.
    Kaji DM
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1214-23. PubMed ID: 2735397
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):37-48. PubMed ID: 1851040
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Testing transport models and transport data by means of kinetic rejection criteria.
    Krupka RM
    Biochem J; 1989 Jun; 260(3):885-91. PubMed ID: 2764910
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A general kinetic analysis of transport. Tests of the carrier model based on predicted relations among experimental parameters.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Oct; 556(3):533-47. PubMed ID: 486476
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Species differences of galactose metabolism in erythrocytes.
    Keiding S
    Scand J Clin Lab Invest; 1985 Dec; 45(8):697-700. PubMed ID: 4081621
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Infinite cis influx of cyclic AMP into human erythrocyte ghosts.
    Holman GD
    Biochim Biophys Acta; 1979 Jun; 553(3):489-94. PubMed ID: 222317
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Asymmetric binding of steroids to internal and external sites in the glucose carrier of erythrocytes.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 May; 598(1):134-44. PubMed ID: 7417422
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The interaction of 3-deoxy-3-fluoro-D-glucose with the hexose-transport system of the human erythrocyte.
    Riley GJ; Taylor NF
    Biochem J; 1973 Dec; 135(4):773-7. PubMed ID: 4778273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The membrane valve: a consequence of asymmetrical inhibition of membrane carriers. I. Equilibrating transport systems.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1979 Jan; 550(1):77-91. PubMed ID: 760792
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Testing models for transport systems dependent on periplasmic binding proteins.
    Krupka RM
    Biochim Biophys Acta; 1992 Sep; 1110(1):11-9. PubMed ID: 1390830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.