These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 620032)

  • 1. Transbilayer movement of cholesterol in phospholipid vesicles under equilibrium and non-equilibrium conditions.
    Poznansky MJ; Lange Y
    Biochim Biophys Acta; 1978 Jan; 506(2):256-64. PubMed ID: 620032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rapid transmembrane movement of cholesterol in small unilamellar vesicles.
    Backer JM; Dawidowicz EA
    Biochim Biophys Acta; 1979 Mar; 551(2):260-70. PubMed ID: 420833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the inside-outside distribution, intermembrane exchange and transbilayer movement of phospholipids in sonicated vesicles by shift reagent NMR.
    Barsukov LI; Victorov AV; Vasilenko IA; Evstigneeva RP; Bergelson LD
    Biochim Biophys Acta; 1980 May; 598(1):153-68. PubMed ID: 7417424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles.
    Kleinfeld AM; Chu P; Storch J
    Biochemistry; 1997 May; 36(19):5702-11. PubMed ID: 9153410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid transmembrane movement of phosphatidylcholine in small unilamellar lipid vesicles formed by detergent removal.
    Kramer RM; Hasselbach HJ; Semenza G
    Biochim Biophys Acta; 1981 Apr; 643(1):233-42. PubMed ID: 7236690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transbilayer distribution and movement of cholesterol and phospholipid in the membrane of influenza virus.
    Lenard J; Rothman JE
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):391-5. PubMed ID: 1061141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts.
    Bloj B; Zilversmit DB
    Biochemistry; 1976 Mar; 15(6):1277-83. PubMed ID: 1252448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells.
    Cooper RA
    J Supramol Struct; 1978; 8(4):413-30. PubMed ID: 723275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of phospholipid oxidation products on transbilayer movement of phospholipids in single lamellar vesicles.
    Shaw JM; Thompson TE
    Biochemistry; 1982 Mar; 21(5):920-7. PubMed ID: 7074060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol.
    Leventis R; Silvius JR
    Biophys J; 2001 Oct; 81(4):2257-67. PubMed ID: 11566796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchangeability and rate of flip-flop of phosphatidylcholine in large unilamellar vesicles, cholate dialysis vesicles, and cytochrome oxidase vesicles.
    Dicorleto PE; Zilversmit DB
    Biochim Biophys Acta; 1979 Mar; 552(1):114-9. PubMed ID: 219890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of liposomes with human erythrocyte ghosts.
    Greidziak M; Ehrke R; Baust G; Torchilin VP; Lasch J
    Biomed Biochim Acta; 1990; 49(4):189-200. PubMed ID: 2403338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric binding of cytochrome b5 to the membrane of human erythrocyte ghosts.
    Enomoto KI; Sato R
    Biochim Biophys Acta; 1977 Apr; 466(1):136-47. PubMed ID: 856267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exhange protein. Measurement of inside--outside transitions.
    Rothman JE; Dawidowicz EA
    Biochemistry; 1975 Jul; 14(13):2809-16. PubMed ID: 1148179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX; Basañez G; Alonso A; Herrmann A; Goñi FM
    Biophys J; 2005 Jan; 88(1):348-59. PubMed ID: 15465865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane phospholipid asymmetry as a factor in erythrocyte-endothelial cell interactions.
    Schlegel RA; Prendergast TW; Williamson P
    J Cell Physiol; 1985 May; 123(2):215-8. PubMed ID: 3980587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.
    Franck PF; Bevers EM; Lubin BH; Comfurius P; Chiu DT; Op den Kamp JA; Zwaal RF; van Deenen LL; Roelofsen B
    J Clin Invest; 1985 Jan; 75(1):183-90. PubMed ID: 3965502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential measurements of the effect of melittin on lipid vesicles, erythrocytes and resealed ghosts.
    Portlock SH; Cherry RJ
    Biochem Soc Trans; 1990 Oct; 18(5):939. PubMed ID: 2083749
    [No Abstract]   [Full Text] [Related]  

  • 20. Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study.
    Galla HJ; Luisetti J
    Biochim Biophys Acta; 1980 Feb; 596(1):108-17. PubMed ID: 7353003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.