These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6200343)

  • 21. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oscillatory potentials and the b-Wave: partial masking and interdependence in dark adaptation and diabetes in the rat.
    Layton CJ; Safa R; Osborne NN
    Graefes Arch Clin Exp Ophthalmol; 2007 Sep; 245(9):1335-45. PubMed ID: 17265029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nontoxic concentration of kanamycin and gentamicin for intravitreal use--evaluated by in vitro ERG.
    Kawasaki K; Ohnogi J
    Doc Ophthalmol; 1988 Aug; 69(4):331-40. PubMed ID: 3203601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alterations of the electroretinogram by intravitreal kainic acid in the rat.
    Li S; Mizota A; Adachi-Usami E
    Jpn J Ophthalmol; 1999; 43(6):495-501. PubMed ID: 10672878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of the oscillatory potentials in the primate retina.
    Heynen H; Wachtmeister L; van Norren D
    Vision Res; 1985; 25(10):1365-73. PubMed ID: 4090272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Oscillating potentials on the B-wave of the ERG in the dog].
    Spiess BM; Leber-Zürcher AC
    Schweiz Arch Tierheilkd; 1992; 134(9):431-43. PubMed ID: 1455215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy.
    Holopigian K; Seiple W; Lorenzo M; Carr R
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2773-80. PubMed ID: 1526726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partial masking of the canine electroretinogram by oscillatory potentials. The problem of frequency bandwidth.
    Sims MH
    J Vet Intern Med; 1990; 4(1):40-2. PubMed ID: 2308121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration.
    Sakai T; Kondo M; Ueno S; Koyasu T; Komeima K; Terasaki H
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4402-9. PubMed ID: 19407007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy.
    Kizawa J; Machida S; Kobayashi T; Gotoh Y; Kurosaka D
    Jpn J Ophthalmol; 2006; 50(4):367-373. PubMed ID: 16897223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the Contribution of the Oscillatory Potentials to the Genesis of the Photopic ERG with the Discrete Wavelet Transform.
    Gauvin M; Dorfman AL; Trang N; Gauthier M; Little JM; Lina JM; Lachapelle P
    Biomed Res Int; 2016; 2016():2790194. PubMed ID: 28101507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The postnatal development of the oscillatory potentials of the electroretinogram. IV. Mesopic characteristics.
    el Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1992 Apr; 70(2):194-200. PubMed ID: 1609567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of electroconvulsive shock on retinal activity.
    Shaw NA
    Physiol Behav; 1999 Aug; 67(1):153-9. PubMed ID: 10463642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nontoxic concentration of antibiotics for intravitreal use--evaluated by human in-vitro ERG.
    Kawasaki K; Ohnogi J
    Doc Ophthalmol; 1988 Dec; 70(4):301-8. PubMed ID: 3251718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in rod and cone-driven oscillatory potentials in the aging human retina.
    Dimopoulos IS; Freund PR; Redel T; Dornstauder B; Gilmour G; Sauvé Y
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5058-73. PubMed ID: 25034601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroretinal responses are modified by chronic exposure to trichloroethylene.
    Blain L; Lachapelle P; Molotchnikoff S
    Neurotoxicology; 1994; 15(3):627-31. PubMed ID: 7854598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of light adaptation on the response characteristics of human oscillatory potentials.
    Peachey NS; Alexander KR; Derlacki DJ; Bobak P; Fishman GA
    Electroencephalogr Clin Neurophysiol; 1991 Jan; 78(1):27-34. PubMed ID: 1701712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillatory potentials of the electroretinogram in patients with unilateral optic atrophy.
    Wachtmeister L; el Azazi M
    Ophthalmologica; 1985; 191(1):39-50. PubMed ID: 4034164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GlyT1 inhibitor reduces oscillatory potentials of the electroretinogram in rats.
    Liu CN; Pettersen B; Seitis G; Osgood S; Somps C
    Cutan Ocul Toxicol; 2014 Sep; 33(3):206-11. PubMed ID: 24147951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.