These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 6200520)

  • 81. Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex.
    Cusick CG; Seltzer B; Cola M; Griggs E
    J Comp Neurol; 1995 Sep; 360(3):513-35. PubMed ID: 8543656
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Patterns of connections from the striate cortex to cortical visual areas in superior temporal sulcus of macaque and middle temporal gyrus of owl monkey.
    Montero VM
    J Comp Neurol; 1980 Jan; 189(1):45-59. PubMed ID: 6766146
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cortical, callosal, and thalamic connections from primary somatosensory cortex in the naked mole-rat (Heterocephalus glaber), with special emphasis on the connectivity of the incisor representation.
    Henry EC; Catania KC
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):626-45. PubMed ID: 16652365
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex.
    Lavenex P; Suzuki WA; Amaral DG
    J Comp Neurol; 2002 Jun; 447(4):394-420. PubMed ID: 11992524
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Anomalous patterns of callosal connections develop in visual cortex of monocularly enucleated hamsters.
    O'Brien BJ; Olavarria JF
    Biol Res; 1995; 28(3):211-8. PubMed ID: 9251751
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A reticular pattern of intrinsic connections in primate area V2 (area 18).
    Rockland KS
    J Comp Neurol; 1985 May; 235(4):467-78. PubMed ID: 2987317
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The lateral suprasylvian corticotectal projection in cats.
    Segal RL; Beckstead RM
    J Comp Neurol; 1984 May; 225(2):259-75. PubMed ID: 6725646
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis).
    Heimel JA; Van Hooser SD; Nelson SB
    J Neurophysiol; 2005 Nov; 94(5):3538-54. PubMed ID: 16000528
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis.
    Kageyama GH; Robertson RT
    J Comp Neurol; 1993 Sep; 335(1):123-48. PubMed ID: 7691903
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups.
    Updyke BV
    J Comp Neurol; 1983 Sep; 219(2):143-81. PubMed ID: 6194185
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Indirect visual cortical input to the deep layers of the hamster's superior colliculus via the basal ganglia.
    Rhoades RW; Kuo DC; Polcer JD; Fish SE; Voneida TJ
    J Comp Neurol; 1982 Jul; 208(3):239-54. PubMed ID: 7119160
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Interactions between callosal, thalamic and associational projections to the visual cortex of the developing rat.
    Sefton AJ; Dreher B; Lim WL
    Exp Brain Res; 1991; 84(1):142-58. PubMed ID: 1713169
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Neonatal superior collicular lesions alter visual callosal development in hamster.
    Mooney RD; Rhoades RW; Fish SE
    Exp Brain Res; 1984; 55(1):9-25. PubMed ID: 6745358
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Relationships between interhemispheric cortical connections and visual areas in hooded rats.
    Thomas HC; Espinoza SG
    Brain Res; 1987 Aug; 417(2):214-24. PubMed ID: 3651812
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice.
    Terashima T; Inoue K; Inoue Y; Mikoshiba K; Tsukada Y
    J Comp Neurol; 1985 Feb; 232(1):83-98. PubMed ID: 3973085
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries.
    Maunsell JH; Van Essen DC
    J Comp Neurol; 1987 Dec; 266(4):535-55. PubMed ID: 2449473
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Reciprocal heterotopic callosal connections between the two striate areas in Tupaia.
    Kretz R; Rager G
    Exp Brain Res; 1990; 82(2):271-8. PubMed ID: 1704846
    [TBL] [Abstract][Full Text] [Related]  

  • 98. An autoradiographic study of bilateral cortical projections from cat area 19 and lateral suprasylvian visual area.
    Squatrito S; Galletti C; Battaglini PP; Sanseverino ER
    Arch Ital Biol; 1981 Feb; 119(1):21-42. PubMed ID: 7271423
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Topographic organization, number, and laminar distribution of callosal cells connecting visual cortical areas 17 and 18 of normally pigmented and Siamese cats.
    Berman NE; Grant S
    Vis Neurosci; 1992 Jul; 9(1):1-19. PubMed ID: 1378754
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat.
    Imig TJ; Brugge JF
    J Comp Neurol; 1978 Dec; 182(4):637-60. PubMed ID: 721972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.