These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 620078)

  • 21. Phospholipid flip-flop and the distribution of surface charges in excitable membranes.
    McLaughlin S; Harary H
    Biophys J; 1974 Mar; 14(3):200-8. PubMed ID: 4823459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Displacement currents associated with the insertion of Alzheimer disease amyloid beta-peptide into planar bilayer membranes.
    Vargas J; Alarcón JM; Rojas E
    Biophys J; 2000 Aug; 79(2):934-44. PubMed ID: 10920024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone.
    Cseh R; Benz R
    Biophys J; 1998 Mar; 74(3):1399-408. PubMed ID: 9512036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface potentials measure ion concentrations near lipid bilayers during rapid solution changes.
    Laver DR; Curtis BA
    Biophys J; 1996 Aug; 71(2):722-31. PubMed ID: 8842210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge movements via the cardiac Na,K-ATPase.
    Gadsby DC; Nakao M; Bahinski A; Nagel G; Suenson M
    Acta Physiol Scand Suppl; 1992; 607():111-23. PubMed ID: 1333148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.
    White SH
    Biophys J; 1970 Dec; 10(12):1127-48. PubMed ID: 5489777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noise analysis and relaxation experiments of transport of hydrophobic anions across lipid membranes at equilibrium and nonequilibrium.
    Junges R; Kolb HA
    Biophys Chem; 1983 Jun; 17(4):301-12. PubMed ID: 6871373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical and solvent effects on the interaction of tetraphenylborate with lipid bilayer membranes.
    Kleijn WB; Bruner LJ
    Biochim Biophys Acta; 1984 Jan; 769(1):33-40. PubMed ID: 6691978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support.
    White RJ; Zhang B; Daniel S; Tang JM; Ervin EN; Cremer PS; White HS
    Langmuir; 2006 Dec; 22(25):10777-83. PubMed ID: 17129059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel.
    Levitt DG
    Biophys J; 1978 May; 22(2):221-48. PubMed ID: 77688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Planar bilayer reconstitution of calcium channels: lipid effects on single-channel kinetics.
    Coronado R
    Circ Res; 1987 Oct; 61(4 Pt 2):I46-52. PubMed ID: 2443274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
    Tan A; Ziegler A; Steinbauer B; Seelig J
    Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical noise from lipid bilayer membranes in the presence of hydrophobic ions.
    Kolb HA; Läuger P
    J Membr Biol; 1977 Dec; 37(3-4):321-45. PubMed ID: 599554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge ulse studies of transport phenomena in bilayer membranes. II. Detailed theory of steady-state behavior and application to valinomycin-mediated potassium transport.
    Feldberg SW; Nakadomari H
    J Membr Biol; 1977 Feb; 31(1-2):81-102. PubMed ID: 839532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical relaxation processes in black lipid membranes in the presence of a cation-selective ionophore.
    Sandblom J; Hägglund J; Eriksson Nils-Einar
    J Membr Biol; 1975 Aug; 23(1):1-19. PubMed ID: 1174357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the ionic displacement current in lipid bilayer membranes.
    Rangarajan SK; de Levie R
    Biophys J; 1979 Feb; 25(2 Pt 1):235-52. PubMed ID: 262389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A laser-temperature-jump method for the study of the rate of transfer of hydrophobic ions and carriers across the interface of thin lipid membranes.
    Brock W; Stark G; Jordan PC
    Biophys Chem; 1981 Aug; 13(4):329-48. PubMed ID: 17000171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of transport of hydrophobic ions through lipid membranes including diffusion polarization in the aqueous phase.
    Jordan PC; Stark G
    Biophys Chem; 1979 Nov; 10(3-4):273-87. PubMed ID: 16997223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.