These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 620093)

  • 21. Endogenous serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) levels in large regions and in discrete brain areas of C57BL and BALBc mice at three times of the day.
    Daszuta A; Barrit MC
    Brain Res Bull; 1982 May; 8(5):477-82. PubMed ID: 6180811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that GABA in the nucleus dorsalis raphé induces stimulation of locomotor activity and eating behavior.
    Przewłocka B; Stala L; Scheel-Krüger J
    Life Sci; 1979 Sep; 25(11):937-45. PubMed ID: 513941
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of lithium administration on rat brain 5-hydroxyindole levels in a possible animal model for mania.
    Vale AL; Ratcliffe F
    Psychopharmacology (Berl); 1987; 91(3):352-5. PubMed ID: 2436249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain serotonin metabolism with relation to the head twitches elicited by lithium in combination with reserpine in mice.
    Furukawa T; Yamada K; Kohno Y; Nagasaki N
    Pharmacol Biochem Behav; 1979 Apr; 10(4):547-9. PubMed ID: 156925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of alkaline elements on the metabolism of 5-hydroxytryptamine in rat's brain.
    Kleinrok Z; Wielosz M
    Pol J Pharmacol Pharm; 1975 Oct; 27(Suppl):107-12. PubMed ID: 1208220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of mazindol, fenfluramine and chlorimipramine on the 5-hydroxytryptamine uptake and storage mechanisms in rat brain: similarities and differences.
    Carruba MO; Picotti GB; Zambotti F; Mantegazza P
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Nov; 300(3):227-32. PubMed ID: 600310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorimipramine inhibition of muricide: the role of the ascending 5-HT projection.
    Marks PC; O'Brien M; Paxinos G
    Brain Res; 1978 Jun; 149(1):270-3. PubMed ID: 566151
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of short- and long-term administration of lithium on the release of endogenous 5-HT in the hippocampus of the rat in vivo and in vitro.
    Sharp T; Bramwell SR; Lambert P; Grahame-Smith DG
    Neuropharmacology; 1991 Sep; 30(9):977-84. PubMed ID: 1922695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of carotid sinus nerve transection on changes in neuropeptide Y and indolamines induced by long-term hypoxia in rats.
    Poncet L; Denoroy L; Dalmaz Y; Pequignot JM
    Pflugers Arch; 1998 Dec; 437(1):130-8. PubMed ID: 9817797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential influences of different stressors upon midbrain raphe neurons in rats.
    Lee EH; Lin HH; Yin HM
    Neurosci Lett; 1987 Sep; 80(1):115-9. PubMed ID: 2443877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of lithium oxybutyrate on the serotonin and 5-hydroxyindoleacetic acid content in the brain of rabbits].
    Saratikov AS; Fisanova LL; Zamoshchina TA; Sakharova SA
    Biull Eksp Biol Med; 1986 Mar; 101(3):312-5. PubMed ID: 2420392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The stimulus-induced release of unmetabolized 5-hydroxytryptamine from superfused rat brain synaptosomes.
    Collard KJ; Cassidy DM; Pye MA; Taylor RM
    J Neurosci Methods; 1981 Aug; 4(2):163-79. PubMed ID: 6168871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential pulse voltammetry in brain tissue: III. Mapping of the rat serotoninergic raphe nuclei by electrochemical detection of 5-HIAA.
    Crespi F; Cespuglio R; Jouvet M
    Brain Res; 1983 Jun; 270(1):45-54. PubMed ID: 6191842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Midbrain raphe lesion in the newborn rat: II. Biochemical alterations in serotoninergic innervation.
    Bourgoin S; Enjalbert A; Adrien J; Héry F; Hamon M
    Brain Res; 1977 May; 127(1):111-26. PubMed ID: 861745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serotonin: release in the forebrain by stimulation of midbrain raphé.
    Aghajanian GK; Rosecrans JA; Sheard MH
    Science; 1967 Apr; 156(3773):402-3. PubMed ID: 4886538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitated growth of transplanted raphe cells in hydrocephalic interstitial edema.
    Ogawa H; Tsubokawa T; Katayama Y; Miyazaki S; Iwasaki M; Shibanoki S; Ishikawa K
    Brain Res Bull; 1990 Jun; 24(6):769-74. PubMed ID: 1695536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Descending modulation of dorsal horn biogenic amines as determined by in vivo dialysis.
    Abhold RH; Bowker RM
    Neurosci Lett; 1990 Jan; 108(1-2):231-6. PubMed ID: 1689474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonin (5-HT) release in the dorsal raphé and ventral hippocampus: raphé control of somatodendritic and terminal 5-HT release.
    Matos FF; Urban C; Yocca FD
    J Neural Transm (Vienna); 1996; 103(1-2):173-90. PubMed ID: 9026372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of serotonergic pathways from the midbrain raphe system to the subfornical organ by hemorrhage in the rat.
    Tanaka J; Okumura T; Sakamaki K; Miyakubo H
    Exp Neurol; 2001 May; 169(1):156-62. PubMed ID: 11312568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis.
    Azmitia EC; Gannon PJ
    Adv Neurol; 1986; 43():407-68. PubMed ID: 2418648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.