BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6201201)

  • 1. Is the SII portion of the cross-bridge in glycerinated rabbit psoas fibers compliant in the rigor state?
    Kimura M; Tawada K
    Biophys J; 1984 Mar; 45(3):603-10. PubMed ID: 6201201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linking studies related to the location of the rigor compliance in glycerinated rabbit psoas fibers: is the SII portion of the cross-bridge compliant?
    Tawada K; Kimura M
    Adv Exp Med Biol; 1984; 170():385-96. PubMed ID: 6741707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffness of glycerinated rabbit psoas fibers in the rigor state. Filament-overlap relation.
    Tawada K; Kimura M
    Biophys J; 1984 Mar; 45(3):593-602. PubMed ID: 6713072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigor tension development in glycerinated rabbit psoas fibers at high salt concentrations.
    Tawada K; Emoto Y
    Adv Exp Med Biol; 1988; 226():219-26. PubMed ID: 3407515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helix-coil melting in rigor and activated cross-bridges of skeletal muscle.
    Harrington WF; Ueno H; Davis JS
    Adv Exp Med Biol; 1988; 226():307-18. PubMed ID: 3044019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural features of cross-bridges in isometrically contracting skeletal muscle.
    Kraft T; Mattei T; Radocaj A; Piep B; Nocula C; Furch M; Brenner B
    Biophys J; 2002 May; 82(5):2536-47. PubMed ID: 11964242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ATP concentration and pH on rigor tension development and dissociation of rigor complex in glycerinated rabbit psoas muscle fiber.
    Izumi K; Ito T; Fukazawa T
    Biochim Biophys Acta; 1981 Dec; 678(3):364-72. PubMed ID: 7317457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensibility of the myofilaments in vertebrate skeletal muscle as revealed by stretching rigor muscle fibers.
    Suzuki S; Sugi H
    J Gen Physiol; 1983 Apr; 81(4):531-46. PubMed ID: 6682885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of spin-labeled myosin heads in glycerinated muscle fibers.
    Thomas DD; Cooke R
    Biophys J; 1980 Dec; 32(3):891-906. PubMed ID: 6266539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for bidirectional functional communication between myosin subfragments 1 and 2 in skeletal muscle fibers.
    Kobayashi T; Kosuge S; Karr T; Sugi H
    Biochem Biophys Res Commun; 1998 May; 246(2):539-42. PubMed ID: 9610398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent cross-linking of single fibers from rabbit psoas increases oscillatory power.
    Tawada K; Kawai M
    Biophys J; 1990 Mar; 57(3):643-7. PubMed ID: 2306508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relation between filament overlap and the number of calcium-binding sites on glycerinated muscle fibers.
    Fuchs F
    Biophys J; 1978 Mar; 21(3):273-7. PubMed ID: 630044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linking within the thick filaments of muscle and its effect on contractile force.
    Ueno H; Harrington WF
    Biochemistry; 1987 Jun; 26(12):3589-96. PubMed ID: 2958085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width.
    Kawai M; Wray JS; Zhao Y
    Biophys J; 1993 Jan; 64(1):187-96. PubMed ID: 7679296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stiffness of carbodiimide-crosslinked glycerinated muscle fibres in rigor and relaxing solutions at high salt concentrations.
    Tawada K; Kimura M
    J Muscle Res Cell Motil; 1986 Aug; 7(4):339-50. PubMed ID: 3760153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of muscle contraction by vanadate. Mechanical and ligand binding studies on glycerol-extracted rabbit fibers.
    Dantzig JA; Goldman YE
    J Gen Physiol; 1985 Sep; 86(3):305-27. PubMed ID: 3903036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction.
    Pemrick SM; Edwards C
    J Gen Physiol; 1974 Nov; 64(5):551-67. PubMed ID: 4443791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of ATP-insensitive weakly-binding crossbridges in single rabbit psoas fibers by treatment with phenylmaleimide or para-phenylenedimaleimide.
    Barnett VA; Ehrlich A; Schoenberg M
    Biophys J; 1992 Feb; 61(2):358-67. PubMed ID: 1547325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle cross-bridge kinetics in rigor and in the presence of ATP analogues.
    Schoenberg M; Eisenberg E
    Biophys J; 1985 Dec; 48(6):863-71. PubMed ID: 4092069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.