These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6201283)

  • 1. Ca2+ transport in mitochondria of the ciliate protozoan Tetrahymena pyriformis.
    Kim JV; Kudzina LJ; Zinchenko VP; Evtodienko JV
    Cell Calcium; 1984 Feb; 5(1):29-41. PubMed ID: 6201283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlortetracycline-mediated continuous Ca2+ oscillations in mitochondria of digitonin-treated Tetrahymena pyriformis.
    Kim YV; Kudzina LYu ; Zinchenko VP; Evtodienko YV
    Eur J Biochem; 1985 Dec; 153(3):503-7. PubMed ID: 3935438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Features of mitochondrial energetics in living unicellular eukaryote Tetrahymena pyriformis. A model for study of mammalian intracellular adaptation.
    Prikhodko EA; Brailovskaya IV; Korotkov SM; Mokhova EN
    Biochemistry (Mosc); 2009 Apr; 74(4):371-6. PubMed ID: 19463089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the transport of mitochondrial Ca2+ during the culture growth cycle of Tetrahymena pyriformis.
    Kim YV; Kudzina LYu ; Zinchenko VP; Evtodienko YV
    J Cell Sci; 1985 Aug; 77():47-56. PubMed ID: 3936855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria.
    Fiskum G; Cockrell RS
    Arch Biochem Biophys; 1985 Aug; 240(2):723-33. PubMed ID: 2411223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms.
    Haumann J; Dash RK; Stowe DF; Boelens AD; Beard DA; Camara AK
    Biophys J; 2010 Aug; 99(4):997-1006. PubMed ID: 20712982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transport in human term placental mitochondria.
    Flores-Herrera O; Pardo JP; Espinosa-García MT; Martínez F
    Biochem Mol Biol Int; 1995 Apr; 35(4):793-801. PubMed ID: 7542958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of Tetrahymena pyriformis GL mitochondria.
    Conklin KA; Chou SC
    Comp Biochem Physiol B; 1972 Jan; 41(1):45-54. PubMed ID: 4342414
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM; Humes HD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular distribution and characteristics of Ca(2+)-transporting systems in cells of ciliate protozoan Tetrahymena pyriformis.
    Yurkov IS; Zinchenko VP; Makarov PR; Kuznetsova SM
    Membr Cell Biol; 1997; 10(5):565-72. PubMed ID: 9225260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria.
    McCormack JG; Bromidge ES; Dawes NJ
    Biochim Biophys Acta; 1988 Jul; 934(3):282-92. PubMed ID: 2840116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hypolipidemic agents on lipid synthesis in subcellular fractions from Tetrahymena pyriformis.
    Pan HY; Chou SC; Conklin KA
    Pharmacology; 1976; 14(6):499-510. PubMed ID: 14346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the state of calcium ions in isolated rat liver mitochondria. II. Effects of phosphate and pH on Ca2+-induced Ca2+ release.
    Blaich G; Krell H; Täfler M; Pfaff E
    Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):73-82. PubMed ID: 6201430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of Mg ions and spermine on ATP-dependent Ca2+ transport in myometrial intracellular structures. II. Comparative study of spermine, Mg ions and cyclosporin A effects on Ca2+ transport in mitochondria].
    Babich LG; Borisova LA; Shlykov SG; Titus OV; Kosterin SA
    Ukr Biokhim Zh (1999); 2004; 76(6):55-62. PubMed ID: 16350744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+.
    Villalobo A; Lehninger AL
    J Biol Chem; 1980 Mar; 255(6):2457-64. PubMed ID: 6766937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bay K 8644, modifier of calcium transport and energy metabolism in rat heart mitochondria: a new intracellular site of action.
    Baydoun AR; Markham A; Morgan RM; Sweetman AJ
    Br J Pharmacol; 1990 Sep; 101(1):15-20. PubMed ID: 1704271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues.
    Crompton M; Moser R; Lüdi H; Carafoli E
    Eur J Biochem; 1978 Jan; 82(1):25-31. PubMed ID: 23291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a high capacity calcium transport system in mitochondria of the yeast Endomyces magnusii.
    Bazhenova EN; Deryabina YI; Eriksson O; Zvyagilskaya RA; Saris NE
    J Biol Chem; 1998 Feb; 273(8):4372-7. PubMed ID: 9468487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functional characteristics of calcium-sensitive adenylyl cyclase of ciliate Tetrahymena pyriformis].
    Derkach KV; Shpakov AO; Uspenskaia ZI; Iudin AL
    Tsitologiia; 2010; 52(11):967-72. PubMed ID: 21268858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.