These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 6201307)
1. Purification of monoclonal antibodies from mouse ascites eliminates contaminating infectious mouse type C viruses and nucleic acids. Levy JA; Lee HM; Kawahata RT; Spitler LE Clin Exp Immunol; 1984 Apr; 56(1):114-20. PubMed ID: 6201307 [TBL] [Abstract][Full Text] [Related]
2. Presence of the inflammatory cytokines IL-1, TNF, and IL-6 in preparations of monoclonal antibodies. Gearing AJ; Leung H; Bird CR; Thorpe R Hybridoma; 1989 Jun; 8(3):361-7. PubMed ID: 2663704 [TBL] [Abstract][Full Text] [Related]
3. Immunologic mechanisms in the pathogenesis of virus-induced leukemia. IV. Mechanism of target cell recognition by autoreactive thymocytes. Proffitt MR; Kozak C; de la Motte C; Caulfield MJ J Immunol; 1985 Jun; 134(6):4244-9. PubMed ID: 3872912 [TBL] [Abstract][Full Text] [Related]
4. Some ascites monoclonal antibody preparations contain contaminants that bind to selected Golgi zones or mast cells. Spicer SS; Spivey MA; Ito M; Schulte BA J Histochem Cytochem; 1994 Feb; 42(2):213-21. PubMed ID: 7507139 [TBL] [Abstract][Full Text] [Related]
5. Identification of a viral antigen recognized by H-2-restricted cytolytic T lymphocytes on a murine leukemia virus-induced tumor. Plata F; Kalil J; Zilber MT; Fellous M; Lévy D J Immunol; 1983 Nov; 131(5):2551-6. PubMed ID: 6605389 [TBL] [Abstract][Full Text] [Related]
6. Purification process monitoring in monoclonal antibody preparation: contamination with viruses, DNA and peptide growth factors. ter Avest AR; van Zoelen EJ; Spijkers IE; Osterhaus AD; van Steenis G; van Kreyl CF Biologicals; 1992 Sep; 20(3):177-86. PubMed ID: 1457104 [TBL] [Abstract][Full Text] [Related]
7. One-step purification of mouse monoclonal antibodies from ascites fluid by hydroxylapatite chromatography. Stanker LH; Vanderlaan M; Juarez-Salinas H J Immunol Methods; 1985 Jan; 76(1):157-69. PubMed ID: 3968440 [TBL] [Abstract][Full Text] [Related]
8. Purification of a glycoprotein from mouse ascites fluid by immunoaffinity chromatography which is related to the major glycoprotein of murine leukemia viruses. Immunologic and structural comparison with purified viral glycoproteins. Kennel SJ J Biol Chem; 1976 Oct; 251(20):6197-204. PubMed ID: 977565 [TBL] [Abstract][Full Text] [Related]
9. Isotype distribution and specificity of the antibody response to primary Moloney murine sarcoma virus infection in BALB/c mice. Powell TJ; Gaupp B; Epps JM; Srinivas RV; Lamon EW Viral Immunol; 1989; 2(2):89-101. PubMed ID: 2673279 [TBL] [Abstract][Full Text] [Related]
10. [Production of ascitic preparations of monoclonal antibodies]. Novokhatskiĭ AS; Malakhova IV; Gaĭdamovich SIa; Mel'nikova EE; Sveshnikova NA Vopr Virusol; 1985; 30(6):749-53. PubMed ID: 3913139 [No Abstract] [Full Text] [Related]
11. Mass production of monoclonal antibody in an ICR mouse using hybridoma cell lines MAC-1 and Aq-12 yields 165 mL ascitic fluid. Hasegawa N; Watanabe M; Ohno T Hybridoma; 2000 Apr; 19(2):191-2. PubMed ID: 10868801 [No Abstract] [Full Text] [Related]
12. Measurement of the concentration of murine IgG monoclonal antibody in hybridoma supernatants and ascites in absolute units by sensitive and reliable enzyme-linked immunosorbent assays (ELISA). Fleming JO; Pen LB J Immunol Methods; 1988 May; 110(1):11-8. PubMed ID: 2836513 [TBL] [Abstract][Full Text] [Related]
13. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Hartley JW; Evans LH; Green KY; Naghashfar Z; Macias AR; Zerfas PM; Ward JM Retrovirology; 2008 Jan; 5():1. PubMed ID: 18177500 [TBL] [Abstract][Full Text] [Related]
14. Infection of a macrophage-like cell line, P388D1 with reovirus; effects of immune ascitic fluids and monoclonal antibodies on neutralization and on enhancement of viral growth. Burstin SJ; Brandriss MW; Schlesinger JJ J Immunol; 1983 Jun; 130(6):2915-9. PubMed ID: 6304193 [TBL] [Abstract][Full Text] [Related]
15. Characterization of xenotropic and dual-tropic type C retroviruses isolated from Abelson tumour. Chang KS; Log T; Bandyopadhyay AK J Gen Virol; 1982 Jan; 58 Pt 1():115-25. PubMed ID: 6292337 [TBL] [Abstract][Full Text] [Related]
16. Monoclonal antibodies to the envelope proteins of Moloney leukemia virus: characterization of recombinant viruses. Cicurel L; Lee JC; Enjuanes L; Ihle JN Transplant Proc; 1980 Sep; 12(3):394-7. PubMed ID: 7222218 [No Abstract] [Full Text] [Related]
17. Immunotherapy of mouse leukemia with monoclonal antibodies directed against type-C virus structural proteins. Boiocchi M; Mondellini P Tumori; 1984 Feb; 70(1):9-16. PubMed ID: 6324432 [TBL] [Abstract][Full Text] [Related]
18. In vitro studies of cell-mediated immunity to Moloney murine leukemia virus and Moloney leukemia-associated surface antigens. Ng AK; Ames RS; McIntire RK; Herberman RB Cancer Res; 1979 Dec; 39(12):4887-93. PubMed ID: 387218 [TBL] [Abstract][Full Text] [Related]
19. Requirement of histocompatible macrophages for the induction of a secondary cytotoxic response to syngeneic tumor cells in vitro. Taniyama T; Holden HT J Immunol; 1979 Jul; 123(1):43-9. PubMed ID: 312881 [No Abstract] [Full Text] [Related]
20. Production of monoclonal antibody in mouse ascitic fluid with two solid tumor-forming hybridoma cell lines. Hasegawa N; Watanabe M; Okano HJ; Ohno T Hybridoma; 1991 Oct; 10(5):647-9. PubMed ID: 1804776 [No Abstract] [Full Text] [Related] [Next] [New Search]