BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 6201394)

  • 1. Protection against reactive oxygen species by NAD(P)H: quinone reductase induced by the dietary antioxidant butylated hydroxyanisole (BHA). Decreased hepatic low-level chemiluminescence during quinone redox cycling.
    Wefers H; Komai T; Talalay P; Sies H
    FEBS Lett; 1984 Apr; 169(1):63-6. PubMed ID: 6201394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct protective effect of NAD(P)H:quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver.
    Prochaska HJ; Talalay P; Sies H
    J Biol Chem; 1987 Feb; 262(5):1931-4. PubMed ID: 2434474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of glutathione transferase, glutathione transferase messenger RNA, and reduced nicotinamide adenine dinucleotide (phosphate):quinone reductase induction by 2(3)-tert-butyl-4-hydroxyanisole in mice.
    Benson AM; Hunkeler MJ; Morrow JF
    Cancer Res; 1984 Nov; 44(11):5256-61. PubMed ID: 6435866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity.
    Benson AM; Hunkeler MJ; Talalay P
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5216-20. PubMed ID: 6933553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H; Sies H
    Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific induction patterns of cancer-protective enzymes in mice by tert-butyl-4-hydroxyanisole and related substituted phenols.
    De Long MJ; Prochaska HJ; Talalay P
    Cancer Res; 1985 Feb; 45(2):546-51. PubMed ID: 3917849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in research on DT-diaphorase--catalytic properties, regulation of activity and significance in the detoxication of foreign compounds.
    Horie S
    Kitasato Arch Exp Med; 1990 Apr; 63(1):11-30. PubMed ID: 2125671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of two isofunctional forms of NAD(P)H: quinone reductase from mouse liver.
    Prochaska HJ; Talalay P
    J Biol Chem; 1986 Jan; 261(3):1372-8. PubMed ID: 2418014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of halobenzene-induced hepatotoxicity by DT-diaphorase modulators, butylated hydroxyanisole and dicoumarol: evidence for possible involvement of quinone metabolites in the toxicity of halobenzenes.
    Mizutani T; Miyamoto Y
    Toxicol Lett; 1999 Mar; 105(1):25-30. PubMed ID: 10092053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their cytotoxicity.
    Powis G; See KL; Santone KS; Melder DC; Hodnett EM
    Biochem Pharmacol; 1987 Aug; 36(15):2473-9. PubMed ID: 2440444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative effects of dietary administration of 2(3)-tert-butyl-4-hydroxyanisole and 3,5-di-tert-butyl-4-hydroxytoluene on several hepatic enzyme activities in mice and rats.
    Cha YN; Heine HS
    Cancer Res; 1982 Jul; 42(7):2609-15. PubMed ID: 6805943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role of DT-diaphorase in the bioactivation of antitumor quinones.
    Talcott RE; Rosenblum M; Levin VA
    Biochem Biophys Res Commun; 1983 Feb; 111(1):346-51. PubMed ID: 6187345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of butylated hydroxyanisole and dicoumarol on the toxicity of menadione to rats.
    Munday R; Smith BL; Munday CM
    Chem Biol Interact; 1998 Jan; 108(3):155-70. PubMed ID: 9528687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DT-diaphorase: differential distribution in rabbit kidney and possible protection against quinone toxicity in the inner medulla.
    Mohandas J; Chennell AF; Duggin GG; Horvath JS; Tiller DJ
    Res Commun Chem Pathol Pharmacol; 1984 Mar; 43(3):463-75. PubMed ID: 6201964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitroreductases and glutathione transferases that act on 4-nitroquinoline 1-oxide and their differential induction by butylated hydroxyanisole in mice.
    Stanley JS; York JL; Benson AM
    Cancer Res; 1992 Jan; 52(1):58-63. PubMed ID: 1370076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevation of quinone reductase activity by anticarcinogenic antioxidants.
    Talalay P; Benson AM
    Adv Enzyme Regul; 1982; 20():287-300. PubMed ID: 6180607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of enhancement of butylated hydroxytoluene-induced mouse lung toxicity by butylated hydroxyanisole.
    Thompson DC; Trush MA
    Toxicol Appl Pharmacol; 1988 Oct; 96(1):122-31. PubMed ID: 3188017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of induction of cancer protective enzymes by analogues of tert-butyl-4-hydroxyanisole (BHA).
    Prochaska HJ; Bregman HS; De Long MJ; Talalay P
    Biochem Pharmacol; 1985 Nov; 34(21):3909-14. PubMed ID: 4062966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition by 2(3)-tert-butyl-4-hydroxyanisole and other antioxidants of epidermal ornithine decarboxylase activity induced by 12-O-tetradecanoylphorbol-13-acetate.
    Kozumbo WJ; Seed JL; Kensler TW
    Cancer Res; 1983 Jun; 43(6):2555-9. PubMed ID: 6850576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.