BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6201406)

  • 1. A comparative study of the cell cycles of nullipotent and multipotent embryonal carcinoma cell lines during exponential growth.
    Sennerstam R; Strömberg JO
    Dev Biol; 1984 May; 103(1):221-9. PubMed ID: 6201406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth rate regulation and random transition. A study performed on embryonal carcinoma cell lines. I.
    Sennerstam R; Strömberg JO
    Cell Tissue Kinet; 1986 Jan; 19(1):57-70. PubMed ID: 3955630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of immunoreactive calcitonin and parathyroid hormone by embryonal carcinoma cells: alteration with retinoic acid-induced differentiation.
    Evain-Brion D; Binet E; Donnadieu M; Laurent P; Anderson WB
    Dev Biol; 1984 Aug; 104(2):406-12. PubMed ID: 6745491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous differentiation in the colonies of a nullipotent embryonal carcinoma cell line (F9).
    Zákány J; Burg K; Raskó I
    Differentiation; 1984; 27(2):146-51. PubMed ID: 6479493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells.
    Mummery CL; van den Brink CE; van der Saag PT; de Laat SW
    Dev Biol; 1984 Aug; 104(2):297-307. PubMed ID: 6745486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic channels in a line of embryonal carcinoma cells induced to undergo neuronal differentiation.
    Ebihara L; Speers WC
    Biophys J; 1984 Dec; 46(6):827-30. PubMed ID: 6097319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary characterisation of a murine embryonal carcinoma cell derived growth promoting activity.
    Stern PL; Priddle JD
    Cell Biol Int Rep; 1984 Jul; 8(7):579-85. PubMed ID: 6534382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium butyrate induces histone hyperacetylation and differentiation of murine embryonal carcinoma cells.
    McCue PA; Gubler ML; Sherman MI; Cohen BN
    J Cell Biol; 1984 Feb; 98(2):602-8. PubMed ID: 6141173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an intraclonal random shift between two types of cell cycle times in an embryonal carcinoma cell line.
    Sennerstam R; Strömberg JO
    J Theor Biol; 1988 Mar; 131(2):151-62. PubMed ID: 3404997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of EC cells in vitro by the fluorescent dye Hoechst 33342.
    Steuer B; Breuer B; Alonso A
    Exp Cell Res; 1990 Jan; 186(1):149-57. PubMed ID: 2298232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementation analyses of differentiation-defective embryonal carcinoma cells.
    McCue PA; Gubler ML; Maffei L; Sherman MI
    Dev Biol; 1984 Jun; 103(2):399-408. PubMed ID: 6144604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of cellular oncogenes in teratoma-derived cell lines.
    Sejersen T; Sümegi J; Ringertz NR
    Exp Cell Res; 1985 Sep; 160(1):19-30. PubMed ID: 2412863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytoenzymology of the early differentiation of mouse embryonal carcinoma cells.
    Swartzendruber DE; Cox KZ; Wilder ME
    Differentiation; 1980 Feb; 16(1):23-30. PubMed ID: 7429065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkaline phosphatase activity in mouse teratoma.
    Berstine EG; Hooper ML; Grandchamp S; Ephrussi B
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3899-903. PubMed ID: 4521215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD30 and its ligand: possible role in regulation of teratoma stem cells.
    Pera MF; Bennett W; Cerretti DP
    APMIS; 1998 Jan; 106(1):169-72; discussion 173. PubMed ID: 9524575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence polarization of six membrane probes in embryonal carcinoma cells after differentiation as measured on a FACS II cell sorter.
    Schaap GH; de Josselin de Jong JE; Jongkind JF
    Cytometry; 1984 Mar; 5(2):188-93. PubMed ID: 6201328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell growth and cell division: dissociated and random initiated? A study performed on embryonal carcinoma cell lines. II.
    Sennerstam R; Strömberg JO
    Cell Tissue Kinet; 1986 Jan; 19(1):71-81. PubMed ID: 3955631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced muscle differentiation in an embryonal carcinoma cell line.
    Edwards MK; Harris JF; McBurney MW
    Mol Cell Biol; 1983 Dec; 3(12):2280-6. PubMed ID: 6656767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and differentiation of pluripotent embryonal carcinoma cells in the Snell dwarf mouse.
    van der Kamp AW; van Buul-Offers SC; Roza-de Jongh EJ; Feijlbrief M; Branger J; van Rongen E
    Br J Cancer; 1984 Oct; 50(4):479-82. PubMed ID: 6534385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.
    Jones-Villeneuve EM; Rudnicki MA; Harris JF; McBurney MW
    Mol Cell Biol; 1983 Dec; 3(12):2271-9. PubMed ID: 6656766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.