These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6201473)

  • 21. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus.
    Mangan EK; Bartamian M; Gober JW
    J Bacteriol; 1995 Jun; 177(11):3176-84. PubMed ID: 7768816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli.
    Yung BY; Kornberg A
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7202-5. PubMed ID: 2845401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and structure of Caulobacter crescentus flagella.
    Shapiro L; Maizel JV
    J Bacteriol; 1973 Jan; 113(1):478-85. PubMed ID: 4688664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A temperature-sensitive mutation in the dnaE gene of Caulobacter crescentus that prevents initiation of DNA replication but not ongoing elongation of DNA.
    Lo T; van Der Schalie E; Werner T; Brun YV; Din N
    J Bacteriol; 2004 Feb; 186(4):1205-12. PubMed ID: 14762018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the 25-, 27-, and 29-kilodalton flagellins in Caulobacter crescentus cell motility: method for construction of deletion and Tn5 insertion mutants by gene replacement.
    Minnich SA; Ohta N; Taylor N; Newton A
    J Bacteriol; 1988 Sep; 170(9):3953-60. PubMed ID: 2842293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-cycle-dependent polar morphogenesis in Caulobacter crescentus: roles of phospholipid, DNA, and protein syntheses.
    O'Neill EA; Bender RA
    J Bacteriol; 1989 Sep; 171(9):4814-20. PubMed ID: 2768189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective cell cycle transcription requires membrane synthesis in Caulobacter.
    Brassinga AK; Gorbatyuk B; Ouimet MC; Marczynski GT
    EMBO J; 2000 Feb; 19(4):702-9. PubMed ID: 10675339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.
    Suzuki E; Kondo T; Makise M; Mima S; Sakamoto K; Tsuchiya T; Mizushima T
    Biol Pharm Bull; 1998 Jul; 21(7):657-61. PubMed ID: 9703244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation.
    Wright R; Stephens C; Zweiger G; Shapiro L; Alley MR
    Genes Dev; 1996 Jun; 10(12):1532-42. PubMed ID: 8666236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the involvement of unsaturated fatty acids in initiating chromosome replication in Escherichia coli.
    Fralick JA; Lark KG
    J Mol Biol; 1973 Nov; 80(3):459-75. PubMed ID: 4586983
    [No Abstract]   [Full Text] [Related]  

  • 31. Order of gene replication in Caulobacter crescentus; use of in vivo labeled genomic DNA as a probe.
    Lott T; Ohta N; Newton A
    Mol Gen Genet; 1987 Dec; 210(3):543-50. PubMed ID: 2828891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA replication initiation is required for mid-cell positioning of FtsZ rings in Caulobacter crescentus.
    Quardokus EM; Brun YV
    Mol Microbiol; 2002 Aug; 45(3):605-16. PubMed ID: 12139609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (p)ppGpp modulates cell size and the initiation of DNA replication in Caulobacter crescentus in response to a block in lipid biosynthesis.
    Stott KV; Wood SM; Blair JA; Nguyen BT; Herrera A; Mora YG; Cuajungco MP; Murray SR
    Microbiology (Reading); 2015 Mar; 161(Pt 3):553-64. PubMed ID: 25573769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of cellular differentiation in Caulobacter crescentus.
    Gober JW; Marques MV
    Microbiol Rev; 1995 Mar; 59(1):31-47. PubMed ID: 7708011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply.
    Holub BJ; Lands WE
    Can J Biochem; 1975 Dec; 53(12):1262-77. PubMed ID: 766924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditional surface structure mutants of Caulobacter crescentus temperature-sensitive flagella formation due to an altered flagellin monomer.
    Marino W; Ammer S; Shapiro L
    J Mol Biol; 1976 Oct; 107(2):115-30. PubMed ID: 1003462
    [No Abstract]   [Full Text] [Related]  

  • 37. Stalk formation and its inhibition in Caulobacter crescentus.
    Haars EG; Schmidt JM
    J Bacteriol; 1974 Dec; 120(3):1409-16. PubMed ID: 4436259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of chromosome replication and the bacterial cell cycle.
    Pato ML
    Annu Rev Microbiol; 1972; 26():347-68. PubMed ID: 4562814
    [No Abstract]   [Full Text] [Related]  

  • 39. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.
    Boyd CH; Gober JW
    J Bacteriol; 2001 Jan; 183(2):725-35. PubMed ID: 11133968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Effects of cessation and reinitiation of phospholipid synthesis on macromolecular synthesis and phospholipid turnover.
    McIntyre TM; Chamberlain BK; Webster RE; Bell RM
    J Biol Chem; 1977 Jul; 252(13):4487-93. PubMed ID: 326776
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.