These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 6201477)
41. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants. Boer H; ten Hoeve-Duurkens RH; Robillard GT Biochemistry; 1996 Oct; 35(39):12901-8. PubMed ID: 8841134 [TBL] [Abstract][Full Text] [Related]
42. New reaction sequences for the non-oxidative pentose phosphate pathway. Williams JF; Blackmore PF; Clark MG Biochem J; 1978 Oct; 176(1):257-82. PubMed ID: 728110 [TBL] [Abstract][Full Text] [Related]
43. Expression, purification, and kinetic characterization of the mannitol transport domain of the phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli. Kinetic evidence that the E. coli mannitol transport protein is a functional dimer. Boer H; ten Hoeve-Duurkens RH; Schuurman-Wolters GK; Dijkstra A; Robillard GT J Biol Chem; 1994 Jul; 269(27):17863-71. PubMed ID: 8027040 [TBL] [Abstract][Full Text] [Related]
44. A thermostable mannitol-1-phosphate dehydrogenase is required in mannitol metabolism of the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Moon J; Henke L; Merz N; Basen M Environ Microbiol; 2019 Oct; 21(10):3728-3736. PubMed ID: 31219674 [TBL] [Abstract][Full Text] [Related]
45. The mtl genes and the mannitol-1-phosphate dehydrogenase from Klebsiella pneumoniae KAY2026. Otte S; Lengeler JW FEMS Microbiol Lett; 2001 Jan; 194(2):221-7. PubMed ID: 11164312 [TBL] [Abstract][Full Text] [Related]
46. Use of cloned mtl genes of Escherichia coli to introduce mtl deletion mutations into the chromosome. Lee CA; Saier MH J Bacteriol; 1983 Feb; 153(2):685-92. PubMed ID: 6401703 [TBL] [Abstract][Full Text] [Related]
48. Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator. Behrens S; Mitchell W; Bahl H Microbiology (Reading); 2001 Jan; 147(Pt 1):75-86. PubMed ID: 11160802 [TBL] [Abstract][Full Text] [Related]
49. Presence of nonoxidative enzymes of the pentose phosphate shunt in Tetrahymena. Eldan M; Blum JJ J Protozool; 1975 Feb; 22(1):145-9. PubMed ID: 163903 [TBL] [Abstract][Full Text] [Related]
50. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Pas HH; Robillard GT Biochemistry; 1988 Aug; 27(16):5835-9. PubMed ID: 3142516 [TBL] [Abstract][Full Text] [Related]
51. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway. Follstad BD; Stephanopoulos G Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650 [TBL] [Abstract][Full Text] [Related]
52. Membrane translocation of mannitol in Escherichia coli without phosphorylation. Solomon E; Miyal K; Lin EC J Bacteriol; 1973 May; 114(2):723-8. PubMed ID: 4574698 [TBL] [Abstract][Full Text] [Related]
53. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. Huang H; Scherman MS; D'Haeze W; Vereecke D; Holsters M; Crick DC; McNeil MR J Biol Chem; 2005 Jul; 280(26):24539-43. PubMed ID: 15878857 [TBL] [Abstract][Full Text] [Related]
54. Insertion of the mannitol permease into the membrane of Escherichia coli. Possible involvement of an N-terminal amphiphilic sequence. Yamada Y; Chang YY; Daniels GA; Wu LF; Tomich JM; Yamada M; Saier MH J Biol Chem; 1991 Sep; 266(27):17863-71. PubMed ID: 1917927 [TBL] [Abstract][Full Text] [Related]
55. [Production of D-mannitol by metabolically engineered Escherichia coli]. Wang X; Chen J; Liu P; Xu H; Yu P; Zhang X Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1450-62. PubMed ID: 24432660 [TBL] [Abstract][Full Text] [Related]
56. Oxidation of glucose, ribose, alanine, and glutamate by Leishmania braziliensis panamensis. Keegan FP; Sansone L; Blum JJ J Protozool; 1987 May; 34(2):174-9. PubMed ID: 2884307 [TBL] [Abstract][Full Text] [Related]
57. The pentose phosphate pathway in rabbit liver. Studies on the metabolic sequence and quantitative role of the pentose phosphate cycle by using a system in situ. Williams JF; Rienits KG; Schofield PJ; Clark MG Biochem J; 1971 Aug; 123(5):923-43. PubMed ID: 5124395 [TBL] [Abstract][Full Text] [Related]
58. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
59. A conserved glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. Saraceni-Richards CA; Jacobson GR J Bacteriol; 1997 Feb; 179(4):1135-42. PubMed ID: 9023195 [TBL] [Abstract][Full Text] [Related]
60. Degradation of deoxyribose by E. coli; studies with cell-free extract and isolation of 2-deoxy-D-ribose 5-phosphate. JONSEN J; LALAND S; STRAND A Biochim Biophys Acta; 1959 Mar; 32(1):117-23. PubMed ID: 13628722 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]