These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 6201596)
1. Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intra-axonal horseradish peroxidase in the cat and monkey. Ralston HJ; Light AR; Ralston DD; Perl ER J Neurophysiol; 1984 Apr; 51(4):777-92. PubMed ID: 6201596 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord. Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Egger MD Brain Res; 1984 Jun; 302(1):135-50. PubMed ID: 6203612 [TBL] [Abstract][Full Text] [Related]
3. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study. Ralston HJ; Ralston DD J Comp Neurol; 1982 Dec; 212(4):435-48. PubMed ID: 6891705 [TBL] [Abstract][Full Text] [Related]
4. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord. DiFiglia M; Aronin N; Leeman SE Neuroscience; 1982 May; 7(5):1127-39. PubMed ID: 6180349 [TBL] [Abstract][Full Text] [Related]
5. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents. Traub RJ; Allen B; Humphrey E; Ruda MA J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117 [TBL] [Abstract][Full Text] [Related]
6. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord. Maxwell DJ; Koerber HR; Bannatyne BA Neuroscience; 1985 Oct; 16(2):375-94. PubMed ID: 4080161 [TBL] [Abstract][Full Text] [Related]
7. The fine structure of laminae IV, V, and VI of the Macaque spinal cord. Ralston HJ J Comp Neurol; 1982 Dec; 212(4):425-34. PubMed ID: 7161419 [TBL] [Abstract][Full Text] [Related]
8. Synaptic ultrastructure of functionally and morphologically characterized neurons of the superficial spinal dorsal horn of cat. Rèthelyi M; Light AR; Perl ER J Neurosci; 1989 Jun; 9(6):1846-63. PubMed ID: 2723753 [TBL] [Abstract][Full Text] [Related]
9. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. II. An ultrastructural analysis. Kalia M; Richter D J Comp Neurol; 1985 Nov; 241(4):521-35. PubMed ID: 4078045 [TBL] [Abstract][Full Text] [Related]
10. The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat. Brown AG; Rose PK; Snow PJ J Physiol; 1977 Nov; 272(3):779-97. PubMed ID: 592215 [TBL] [Abstract][Full Text] [Related]
11. Relationships between hair-follicle afferent axons and glycine-immunoreactive profiles in cat spinal dorsal horn. Todd AJ; Maxwell DJ; Brown AG Brain Res; 1991 Nov; 564(1):132-7. PubMed ID: 1777816 [TBL] [Abstract][Full Text] [Related]
12. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD J Comp Neurol; 1985 Feb; 232(2):229-40. PubMed ID: 3973092 [TBL] [Abstract][Full Text] [Related]
13. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. Réthelyi M; Light AR; Perl ER J Comp Neurol; 1982 Jun; 207(4):381-93. PubMed ID: 6288776 [TBL] [Abstract][Full Text] [Related]
14. Electron microscopic observations of terminals of functionally identified afferent fibers in cat spinal cord. Egger MD; Freeman NC; Malamed S; Masarachia P; Proshansky E Brain Res; 1981 Feb; 207(1):157-62. PubMed ID: 6258726 [TBL] [Abstract][Full Text] [Related]
15. Opioid neurons and pain modulation: an ultrastructural analysis of enkephalin in cat superficial dorsal horn. Glazer EJ; Basbaum AI Neuroscience; 1983 Oct; 10(2):357-76. PubMed ID: 6355893 [TBL] [Abstract][Full Text] [Related]
16. Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat. Maxwell DJ; Bannatyne BA; Fyffe RE; Brown AG Q J Exp Physiol; 1984 Apr; 69(2):381-92. PubMed ID: 6328562 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. Sutherland FI; Bannatyne BA; Kerr R; Riddell JS; Maxwell DJ J Comp Neurol; 2002 Oct; 452(2):154-62. PubMed ID: 12271489 [TBL] [Abstract][Full Text] [Related]
18. The terminations of corticospinal tract axons in the macaque monkey. Ralston DD; Ralston HJ J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074 [TBL] [Abstract][Full Text] [Related]
19. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography. Ralston HJ; Ralston DD J Neurocytol; 1979 Apr; 8(2):151-66. PubMed ID: 112222 [TBL] [Abstract][Full Text] [Related]
20. Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat's spinal cord. Brown AG; Fyffe RE; Noble R J Physiol; 1980 Oct; 307():385-400. PubMed ID: 7205669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]