These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 6201596)
41. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat. Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681 [TBL] [Abstract][Full Text] [Related]
42. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons. Oszlács O; Jancsó G; Kis G; Dux M; Sántha P Neuroscience; 2015 Dec; 311():243-52. PubMed ID: 26520849 [TBL] [Abstract][Full Text] [Related]
43. Corticorubral synaptic organization in Macaca fascicularis: a study utilizing degeneration, anterograde transport of WGA-HRP, and combined immuno-GABA-gold technique and computer-assisted reconstruction. Ralston DD J Comp Neurol; 1994 Dec; 350(4):657-73. PubMed ID: 7534317 [TBL] [Abstract][Full Text] [Related]
44. Inhibitory synaptic input to identified rubrospinal neurons in Macaca fascicularis: an electron microscopic study using a combined immuno-GABA-gold technique and the retrograde transport of WGA-HRP. Ralston DD; Milroy AM J Comp Neurol; 1992 Jun; 320(1):97-109. PubMed ID: 1383282 [TBL] [Abstract][Full Text] [Related]
45. Synapses between slowly adapting lung stretch receptor afferents and inspiratory beta-neurons in the nucleus of the solitary tract of cats: a light and electron microscopic analysis. Anders K; Ohndorf W; Dermietzel R; Richter DW J Comp Neurol; 1993 Sep; 335(2):163-72. PubMed ID: 8227512 [TBL] [Abstract][Full Text] [Related]
46. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. Roppolo JR; Nadelhaft I; de Groat WC J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996 [TBL] [Abstract][Full Text] [Related]
47. Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey. Knyihar-Csillik E; Csillik B; Rakic P J Comp Neurol; 1982 Oct; 210(4):357-75. PubMed ID: 7142447 [TBL] [Abstract][Full Text] [Related]
48. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord. LaMotte C J Comp Neurol; 1977 Apr; 172(3):529-61. PubMed ID: 402397 [TBL] [Abstract][Full Text] [Related]
49. Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). LaMotte CC; Kapadia SE; Shapiro CM J Comp Neurol; 1991 Sep; 311(4):546-62. PubMed ID: 1721924 [TBL] [Abstract][Full Text] [Related]
50. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius. Kalia M; Richter D J Comp Neurol; 1988 Aug; 274(4):574-94. PubMed ID: 2464625 [TBL] [Abstract][Full Text] [Related]
51. Quantitative ultrastructure of Ia boutons in the ventral horn: scaling and positional relationships. Pierce JP; Mendell LM J Neurosci; 1993 Nov; 13(11):4748-63. PubMed ID: 7693892 [TBL] [Abstract][Full Text] [Related]
52. Morphology and synaptic connections of ultrafine primary axons in lamina I of the spinal dorsal horn: candidates for the terminal axonal arbors of primary neurons with unmyelinated (C) axons. Gobel S; Falls WM; Humphrey E J Neurosci; 1981 Oct; 1(10):1163-79. PubMed ID: 6169815 [TBL] [Abstract][Full Text] [Related]
53. Time course of dorsal root axon regeneration into transplants of fetal spinal cord: an electron microscopic study. Itoh Y; Sugawara T; Kowada M; Tessler A Exp Neurol; 1993 Sep; 123(1):133-46. PubMed ID: 8405273 [TBL] [Abstract][Full Text] [Related]
55. Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord. Bras H; Cavallari P; Jankowska E; Kubin L J Comp Neurol; 1989 Dec; 290(1):1-15. PubMed ID: 2592606 [TBL] [Abstract][Full Text] [Related]
56. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat. McLean JH; Hopkins DA J Comp Neurol; 1981 Jan; 195(1):157-75. PubMed ID: 7204650 [TBL] [Abstract][Full Text] [Related]
57. Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry. Ruda MA; Coffield J; Dubner R J Neurosci; 1984 Aug; 4(8):2117-32. PubMed ID: 6206211 [TBL] [Abstract][Full Text] [Related]
58. Bulbospinal projections in the primate: a light and electron microscopic study of a pain modulating system. Basbaum AI; Ralston DD; Ralston HJ J Comp Neurol; 1986 Aug; 250(3):311-23. PubMed ID: 3745518 [TBL] [Abstract][Full Text] [Related]
59. Ultrastructure of muscle spindle afferent terminations in lamina VI of the cat spinal cord. Maxwell DJ; Bannatyne BA Brain Res; 1983 Dec; 288(1-2):297-301. PubMed ID: 6198026 [TBL] [Abstract][Full Text] [Related]
60. The relationship of dorsal root afferents to motoneuron somata and dendrites in the adult bullfrog: a light and electron microscopic study using horseradish peroxidase. Liuzzi FJ; Beattie MS; Bresnahan JC Neuroscience; 1984 Apr; 11(4):951-61. PubMed ID: 6610840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]