These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 6201612)

  • 1. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis.
    Clarke JD; Hayes BP; Hunt SP; Roberts A
    J Physiol; 1984 Mar; 348():511-25. PubMed ID: 6201612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming.
    Clarke JD; Roberts A
    J Physiol; 1984 Sep; 354():345-62. PubMed ID: 6481637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.
    James LJ; Soffe SR
    J Exp Biol; 2011 Oct; 214(Pt 20):3341-50. PubMed ID: 21957097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ionic basis of the resting potential and a slow depolarizing response in Rohon-Beard neurones of Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1976 Feb; 255(1):105-35. PubMed ID: 1255512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1988 Apr; 8(4):1350-60. PubMed ID: 2895802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1982 Sep; 330():145-62. PubMed ID: 7175739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the basis of delayed depolarization and its role in repetitive firing of Rohon-Beard neurones in Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1984 Dec; 357():51-65. PubMed ID: 6512703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triggering and gating of motor responses by sensory stimulation: behavioural selection in Xenopus embryos.
    Soffe SR
    Proc Biol Sci; 1991 Dec; 246(1317):197-203. PubMed ID: 1686085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pattern of sensory discharge can determine the motor response in young Xenopus tadpoles.
    Soffe SR
    J Comp Physiol A; 1997 Jun; 180(6):711-5. PubMed ID: 9190047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis.
    Lamborghini JE
    J Comp Neurol; 1987 Oct; 264(1):47-55. PubMed ID: 3680623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurones in vitro.
    Bixby JL; Spitzer NC
    J Physiol; 1984 Aug; 353():143-55. PubMed ID: 6148408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos.
    Roberts A; Sillar KT
    Eur J Neurosci; 1990; 2(12):1051-1062. PubMed ID: 12106066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-dependent Modulation of a Cutaneous Sensory Pathway by Glycinergic Inhibition from the Locomotor Rhythm Generator in Xenopus Embryos.
    Sillar KT; Roberts A
    Eur J Neurosci; 1992 Oct; 4(11):1022-1034. PubMed ID: 12106408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neuroanatomy of an amphibian embryo spinal cord.
    Roberts A; Clarke JD
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):195-212. PubMed ID: 17506218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials.
    Lamborghini JE; Revenaugh M; Spitzer NC
    J Comp Neurol; 1979 Feb; 183(4):741-52. PubMed ID: 762270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscarinic modulation of the Xenopus laevis tadpole spinal mechanosensory pathway.
    Porter NJ; Li WC
    Brain Res Bull; 2018 May; 139():278-284. PubMed ID: 29601952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the inward current of the action potential of Rohon-Beard neurones.
    Baccaglini PI; Spitzer NC
    J Physiol; 1977 Sep; 271(1):93-117. PubMed ID: 915836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.