BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 6201894)

  • 1. Genetic control of myelin basic protein-induced experimental allergic encephalomyelitis in mice.
    Fritz RB; Perry LL; Chou CH
    Prog Clin Biol Res; 1984; 146():235-42. PubMed ID: 6201894
    [No Abstract]   [Full Text] [Related]  

  • 2. Gene specific and antigen specific strategies for the induction of suppressor T cells to myelin basic protein.
    Steinman L; Schwartz G; Waldor M; O'Hearn M; Lim M; Sriram S
    Prog Clin Biol Res; 1984; 146():393-7. PubMed ID: 6201908
    [No Abstract]   [Full Text] [Related]  

  • 3. Experimental autoimmune encephalomyelitis-resistant mice have highly encephalitogenic myelin basic protein (MBP)-specific T cell clones that recognize a MBP peptide with high affinity for MHC class II.
    Abromson-Leeman S; Alexander J; Bronson R; Carroll J; Southwood S; Dorf M
    J Immunol; 1995 Jan; 154(1):388-98. PubMed ID: 7527816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of myelin lipids in experimental allergic encephalomyelitis.
    Hosein ZZ; Gilbert JJ; Strejan GH
    Prog Clin Biol Res; 1984; 146():49-54. PubMed ID: 6201918
    [No Abstract]   [Full Text] [Related]  

  • 5. Specific treatment of autoimmunity with recombinant invariant chains in which CLIP is replaced by self-epitopes.
    Bischof F; Wienhold W; Wirblich C; Malcherek G; Zevering O; Kruisbeek AM; Melms A
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12168-73. PubMed ID: 11593032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-domain MHC class II molecules form stable complexes with myelin basic protein 69-89 peptide that detect and inhibit rat encephalitogenic T cells and treat experimental autoimmune encephalomyelitis.
    Burrows GG; Bebo BF; Adlard KL; Vandenbark AA; Offner H
    J Immunol; 1998 Dec; 161(11):5987-96. PubMed ID: 9834080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple encephalitogenic peptides of myelin basic protein in A.CA mice.
    Rajan AJ; Cross AH; Raine CS; Diamond B
    Cell Immunol; 1993 Apr; 147(2):378-87. PubMed ID: 7680964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further delineation of encephalitogenic determinant for PL/J and (SJLxPL)F1 mice.
    Chou CH; Shapira R; Fritz RB
    Prog Clin Biol Res; 1984; 146():229-34. PubMed ID: 6201893
    [No Abstract]   [Full Text] [Related]  

  • 9. Experimental autoimmune encephalomyelitis in mice: Lyt and Ia phenotypes of the effector and suppressor cells.
    Bernard CC; Mackay IR
    Prog Clin Biol Res; 1984; 146():277-84. PubMed ID: 6232623
    [No Abstract]   [Full Text] [Related]  

  • 10. An assessment of actively induced and adoptively transferred experimental allergic encephalomyelitis in the nude rat.
    Hinrichs DJ; Wegmann KW; Humphres RC
    Prog Clin Biol Res; 1984; 146():307-11. PubMed ID: 6201904
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of myelin antigens in murine relapsing experimental allergic encephalomyelitis.
    Lublin FD
    J Clin Lab Immunol; 1984 Apr; 13(4):179-82. PubMed ID: 6204053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: experimental autoimmune encephalomyelitis induction in TCR transgenic mice.
    Grogan JL; Kramer A; Nogai A; Dong L; Ohde M; Schneider-Mergener J; Kamradt T
    J Immunol; 1999 Oct; 163(7):3764-70. PubMed ID: 10490973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adoptive transfer of myelin basic protein-induced experimental autoimmune encephalomyelitis between SJL and B10.S mice: correlation of priming milieus with susceptibility and resistance phenotypes.
    Chen F; Shaw MK; Li J; Lisak RP; Tse HY
    J Neuroimmunol; 2006 Apr; 173(1-2):146-54. PubMed ID: 16480778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Ia antigen by cells responsible for enhanced transfer of EAE.
    Driscoll BF; Kies MW
    Prog Clin Biol Res; 1984; 146():291-8. PubMed ID: 6201901
    [No Abstract]   [Full Text] [Related]  

  • 15. CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis.
    Oliveira-dos-Santos AJ; Ho A; Tada Y; Lafaille JJ; Tonegawa S; Mak TW; Penninger JM
    J Immunol; 1999 Apr; 162(8):4490-5. PubMed ID: 10201986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prevention of development of experimental allergic encephalomyelitis by encephalitogenic protein].
    Zhitnukhin IuL; Sofronov BN; Beme DKh; Baĭkovskaia MN
    Patol Fiziol Eksp Ter; 1978; (5):55-60. PubMed ID: 83596
    [No Abstract]   [Full Text] [Related]  

  • 17. Immunopathogenic mechanisms in experimental allergic encephalomyelitis.
    Kálmán B; Lublin FD
    Curr Opin Neurol Neurosurg; 1993 Apr; 6(2):182-8. PubMed ID: 7683223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease.
    Fuller KG; Olson JK; Howard LM; Croxford JL; Miller SD
    Methods Mol Med; 2004; 102():339-61. PubMed ID: 15286394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A viral peptide with limited homology to a self peptide can induce clinical signs of experimental autoimmune encephalomyelitis.
    Gautam AM; Liblau R; Chelvanayagam G; Steinman L; Boston T
    J Immunol; 1998 Jul; 161(1):60-4. PubMed ID: 9647207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latent TGF-beta1-transduced CD4+ T cells suppress the progression of allergic encephalomyelitis.
    Murano M; Xiong X; Murano N; Salzer JL; Lafaille JJ; Tsiagbe VK
    J Leukoc Biol; 2006 Jan; 79(1):140-6. PubMed ID: 16244108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.