These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6202265)

  • 1. ATP-ADP-dependent phosphorylations of glycolysis metabolites, creatine and glycerol: their compartition and thermodynamic relationship in gastrocnemius muscle cell of exercised guinea pigs.
    Feraudi M; Kolb J; Hassel M; Weicker H
    Arch Int Physiol Biochim; 1983 Nov; 91(4):351-60. PubMed ID: 6202265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescent and fluorometric techniques for determinations of 19 metabolites of ADP/ATP-dependent transformations in energy metabolism in 200 (or 400) mg muscle.
    Feraudi M; Gärtner C; Kolb J; Weicker H
    J Clin Chem Clin Biochem; 1983 Apr; 21(4):193-7. PubMed ID: 6854230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates.
    Beis I; Newsholme EA
    Biochem J; 1975 Oct; 152(1):23-32. PubMed ID: 1212224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase.
    Bünger R; Mukohara N; Kang YH; Mallet RT
    Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role.
    Weinhouse H; Benziman M
    J Bacteriol; 1976 Aug; 127(2):747-54. PubMed ID: 956117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentation of high-energy phosphates in resting and working rat skeletal muscle.
    Hebisch S; Soboll S; Schwenen M; Sies H
    Biochim Biophys Acta; 1984 Feb; 764(2):117-24. PubMed ID: 6696884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy balance in DNFB-treated and untreated frog muscle.
    Curtin NA; Woledge RC
    J Physiol; 1975 Apr; 246(3):737-52. PubMed ID: 1079537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of glycolysis in cerebral cortex slices.
    Rolleston FS; Newsholme EA
    Biochem J; 1967 Aug; 104(2):524-33. PubMed ID: 4227784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosoma brucei brucei: the catabolism of glycolytic intermediates by digitonin-permeabilized bloodstream trypomastigotes and some aspects of regulation of anaerobic glycolysis.
    Kiaira JK; Njogu RM
    Int J Biochem; 1988; 20(10):1165-70. PubMed ID: 3248672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P NMR quantitation of the displacement of equilibria of arginine, creatine, pyruvate, and 3-P-glycerate kinase reactions by substitution of sulfur for oxygen in the beta phosphate of ATP.
    Lerman CL; Cohn M
    J Biol Chem; 1980 Sep; 255(18):8756-60. PubMed ID: 6997302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro formation of glucose 6-phosphate from 3-phosphoglycerate by rat liver cytosol.
    Mörikofer-Zwez S; Stoecklin FB; Walter P
    Hoppe Seylers Z Physiol Chem; 1981 Jan; 362(1):47-57. PubMed ID: 7216161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-mortem glycolysis in ox skeletal muscle. Effect of pre-rigor freezing and thawing on the intermediary metabolism.
    Scopes RK; Newbold RP
    Biochem J; 1968 Sep; 109(2):197-202. PubMed ID: 4300508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man.
    Edwards RH; Harris RC; Hultman E; Kaijser L; Koh D; Nordesjö LO
    J Physiol; 1972 Jan; 220(2):335-52. PubMed ID: 5014103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The creatine phosphoryltransfer reaction in iodoacetate-poisoned muscle.
    CARLSON FD; SIGER A
    J Gen Physiol; 1959 Nov; 43(2):301-13. PubMed ID: 13807760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Arch Biochem Biophys; 2000 Dec; 384(1):143-53. PubMed ID: 11147825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THERMODYNAMIC CONSIDERATIONS ON ERYTHROCYTE GLYCOLYSIS.
    MINAKAMI S; YOSHIKAWA H
    Biochem Biophys Res Commun; 1965 Feb; 18():345-9. PubMed ID: 14300746
    [No Abstract]   [Full Text] [Related]  

  • 18. Sensitivity of yeast glycolytic enzymes to chloroquine.
    Manhart A; Kalisz H; Holzer H
    Arch Microbiol; 1988; 150(3):309-12. PubMed ID: 2845878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise.
    Sahlin K; Harris RC; Hultman E
    Biochem J; 1975 Nov; 152(2):173-80. PubMed ID: 4060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic effects of D-glyceraldehyde in isolated hepatocytes.
    Maswoswe SM; Daneshmand F; Davies DR
    Biochem J; 1986 Dec; 240(3):771-6. PubMed ID: 3827866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.