These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 6202757)
1. Recovery of myelin basic protein reactive T cells from spinal cords of Lewis rats with autoimmune encephalomyelitis. Burns J; Rosenzweig A; Zweiman B; Moskovitz A; Lisak R J Immunol; 1984 Jun; 132(6):2690-2. PubMed ID: 6202757 [TBL] [Abstract][Full Text] [Related]
2. OX-40 antibody enhances for autoantigen specific V beta 8.2+ T cells within the spinal cord of Lewis rats with autoimmune encephalomyelitis. Weinberg AD; Lemon M; Jones AJ; Vainiene M; Celnik B; Buenafe AC; Culbertson N; Bakke A; Vandenbark AA; Offner H J Neurosci Res; 1996 Jan; 43(1):42-9. PubMed ID: 8838572 [TBL] [Abstract][Full Text] [Related]
3. Apoptosis of V beta 8.2+ T lymphocytes in the spinal cord during recovery from experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. McCombe PA; Nickson I; Tabi Z; Pender MP J Neurol Sci; 1996 Jul; 139(1):1-6. PubMed ID: 8836965 [TBL] [Abstract][Full Text] [Related]
4. Suppression of experimental autoimmune encephalomyelitis in Lewis rats by antibodies against CD2. Jung S; Toyka K; Hartung HP Eur J Immunol; 1995 May; 25(5):1391-8. PubMed ID: 7539758 [TBL] [Abstract][Full Text] [Related]
5. A suppressor T-lymphocyte cell line for autoimmune encephalomyelitis. Ellerman KE; Powers JM; Brostoff SW Nature; 1988 Jan; 331(6153):265-7. PubMed ID: 2447505 [TBL] [Abstract][Full Text] [Related]
6. Target organ-specific up-regulation of the MRC OX-40 marker and selective production of Th1 lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune encephalomyelitis. Weinberg AD; Wallin JJ; Jones RE; Sullivan TJ; Bourdette DN; Vandenbark AA; Offner H J Immunol; 1994 May; 152(9):4712-21. PubMed ID: 7512604 [TBL] [Abstract][Full Text] [Related]
7. Experimental autoimmune encephalomyelitis in the maturing central nervous system. Transfer of myelin basic protein-specific T line lymphocytes to neonatal Lewis rats. Umehara F; Qin YF; Goto M; Wekerle H; Meyermann R Lab Invest; 1990 Feb; 62(2):147-55. PubMed ID: 1689408 [TBL] [Abstract][Full Text] [Related]
8. A myelin basic protein-specific T lymphocyte line that mediates experimental autoimmune encephalomyelitis. Vandenbark AA; Gill T; Offner H J Immunol; 1985 Jul; 135(1):223-8. PubMed ID: 2582032 [TBL] [Abstract][Full Text] [Related]
9. T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins. Mor F; Cohen IR J Clin Invest; 1992 Dec; 90(6):2447-55. PubMed ID: 1281835 [TBL] [Abstract][Full Text] [Related]
10. Limiting-dilution analysis of the frequency of myelin basic protein-reactive T cells in Lewis, PVG/c and BN rats. Implication for susceptibility to autoimmune encephalomyelitis. Matsumoto Y; Kawai K; Tomita Y; Fujiwara M Immunology; 1990 Feb; 69(2):215-21. PubMed ID: 1689693 [TBL] [Abstract][Full Text] [Related]
11. Induction of resistance to active experimental allergic encephalomyelitis by myelin basic protein-specific Th2 cell lines generated in the presence of glucocorticoids and IL-4. RamÃrez F; Mason D Eur J Immunol; 2000 Mar; 30(3):747-58. PubMed ID: 10741389 [TBL] [Abstract][Full Text] [Related]
12. Passive transfer of experimental allergic encephalomyelitis by myelin basic protein-specific L3T4+ T cell clones possessing several functions. Lemire JM; Weigle WO J Immunol; 1986 Nov; 137(10):3169-74. PubMed ID: 2430015 [TBL] [Abstract][Full Text] [Related]
13. EAE TCR motifs and antigen recognition in myelin basic protein-induced anterior uveitis in Lewis rats. Buenafe AC; Offner H; Machnicki M; Elerding H; Adlard K; Jacobs R; Vandenbark AA; Adamus G J Immunol; 1998 Aug; 161(4):2052-9. PubMed ID: 9712079 [TBL] [Abstract][Full Text] [Related]
14. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Xie L; Li XK; Funeshima-Fuji N; Kimura H; Matsumoto Y; Isaka Y; Takahara S Int Immunopharmacol; 2009 May; 9(5):575-81. PubMed ID: 19539560 [TBL] [Abstract][Full Text] [Related]
15. Autoimmune effector cells. IV. Induction of experimental allergic encephalomyelitis in Lewis rats without adjuvant. Holda JH; Silberg D; Swanborg RH J Immunol; 1983 Feb; 130(2):732-4. PubMed ID: 6184402 [TBL] [Abstract][Full Text] [Related]
16. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain. Skundric DS; Huston K; Shaw M; Tse HY; Raine CS Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038 [TBL] [Abstract][Full Text] [Related]
17. Immunological tolerance to a defined myelin basic protein antigen administered intrathymically. Goss JA; Nakafusa Y; Roland CR; Hickey WF; Flye MW J Immunol; 1994 Nov; 153(9):3890-8. PubMed ID: 7523508 [TBL] [Abstract][Full Text] [Related]
18. Defective T helper cell epitope responsible for the failure of region 69-84 of the human myelin basic protein to induce experimental allergic encephalomyelitis in the Lewis rat. Hashim GA; Galang AB; Srinivasan JV; Carvalho EF; Offner H; Vandenbark AA; Cleveland WL; Day ED J Neurosci Res; 1989 Oct; 24(2):222-30. PubMed ID: 2479765 [TBL] [Abstract][Full Text] [Related]
19. Chronic permeability of the central nervous system to mononuclear cells in experimental allergic encephalomyelitis in the Lewis rat. Stohl W; Gonatas NK J Immunol; 1978 Sep; 121(3):844-50. PubMed ID: 308523 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide and the immunomodulation of experimental allergic encephalomyelitis. Gold DP; Schroder K; Powell HC; Kelly CJ Eur J Immunol; 1997 Nov; 27(11):2863-9. PubMed ID: 9394811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]