These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6202852)

  • 1. Quantitative lineage analysis of the frog's nervous system. I. Lineages of Rohon-Beard neurons and primary motoneurons.
    Jacobson M; Moody SA
    J Neurosci; 1984 May; 4(5):1361-9. PubMed ID: 6202852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres.
    Moody SA
    J Neurosci; 1989 Aug; 9(8):2919-30. PubMed ID: 2769371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo.
    Jacobson M
    J Neurosci; 1981 Aug; 1(8):918-22. PubMed ID: 7346595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rohon-Beard neurons arise from a substitute ancestral cell after removal of the cell from which they normally arise in the 16-cell frog embryo.
    Jacobson M
    J Neurosci; 1981 Aug; 1(8):923-7. PubMed ID: 7346596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of primary spinal neuron lineages after deletion of a major progenitor.
    Gallagher BC; Moody SA
    Biol Cell; 2004 Sep; 96(7):539-44. PubMed ID: 15380620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation.
    Lamborghini JE
    J Comp Neurol; 1980 Jan; 189(2):323-33. PubMed ID: 7364967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.
    James LJ; Soffe SR
    J Exp Biol; 2011 Oct; 214(Pt 20):3341-50. PubMed ID: 21957097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-lived zebrafish Rohon-Beard cells.
    Williams K; Ribera AB
    Dev Biol; 2020 Aug; 464(1):45-52. PubMed ID: 32473165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages.
    Jacobson M; Hirose G
    J Neurosci; 1981 Mar; 1(3):271-84. PubMed ID: 6167693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord.
    Hartenstein V
    J Comp Neurol; 1993 Feb; 328(2):213-31. PubMed ID: 8423241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuroanatomy of an amphibian embryo spinal cord.
    Roberts A; Clarke JD
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):195-212. PubMed ID: 17506218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus Bcl-X(L) selectively protects Rohon-Beard neurons from metamorphic degeneration.
    Coen L; du Pasquier D; Le Mevel S; Brown S; Tata J; Mazabraud A; Demeneix BA
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7869-74. PubMed ID: 11427732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1988 Apr; 8(4):1350-60. PubMed ID: 2895802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials.
    Lamborghini JE; Revenaugh M; Spitzer NC
    J Comp Neurol; 1979 Feb; 183(4):741-52. PubMed ID: 762270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic origins of cells in the leech Helobdella triserialis.
    Weisblat DA; Kim SY; Stent GS
    Dev Biol; 1984 Jul; 104(1):65-85. PubMed ID: 6734941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enkephalin reduces calcium action potentials in Rohon-Beard neurons in vivo.
    Bixby JL; Spitzer NC
    J Neurosci; 1983 May; 3(5):1014-8. PubMed ID: 6842279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurite outgrowth traced by means of horseradish peroxidase inherited from neuronal ancestral cells in frog embryos.
    Jacobson M; Huang S
    Dev Biol; 1985 Jul; 110(1):102-13. PubMed ID: 4007259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis.
    Clarke JD; Hayes BP; Hunt SP; Roberts A
    J Physiol; 1984 Mar; 348():511-25. PubMed ID: 6201612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ionic basis of the resting potential and a slow depolarizing response in Rohon-Beard neurones of Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1976 Feb; 255(1):105-35. PubMed ID: 1255512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fates of the blastomeres of the 32-cell-stage Xenopus embryo.
    Moody SA
    Dev Biol; 1987 Aug; 122(2):300-19. PubMed ID: 3596014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.