BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 6202853)

  • 1. Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines.
    Freedman SB; Dawson G; Villereal ML; Miller RJ
    J Neurosci; 1984 Jun; 4(6):1453-67. PubMed ID: 6202853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-sensitive calcium channels in differentiated neuroblastoma X glioma hybrid (NG108-15) cells: characterization by quin 2 fluorescence.
    Noronha-Blob L; Richard C; U'Prichard DC
    J Neurochem; 1988 May; 50(5):1381-90. PubMed ID: 2452233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of steroidal alkaloid toxins with calcium channels in neuronal cell lines.
    Kongsamut S; Freedman SB; Simon BE; Miller RJ
    Life Sci; 1985 Apr; 36(15):1493-501. PubMed ID: 2580208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium and calcium fluxes in a clonal nerve cell line.
    Stallcup WB
    J Physiol; 1979 Jan; 286():525-40. PubMed ID: 571466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of maitotoxin with voltage-sensitive calcium channels in cultured neuronal cells.
    Freedman SB; Miller RJ; Miller DM; Tindall DR
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4582-5. PubMed ID: 6205399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of voltage-sensitive calcium channels in a clonal pituitary cell line.
    Shangold GA; Kongsamut S; Miller RJ
    Life Sci; 1985 Jun; 36(23):2209-15. PubMed ID: 2582224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydropyridine binding sites regulate calcium influx through specific voltage-sensitive calcium channels in cerebellar granule cells.
    Carboni E; Wojcik WJ
    J Neurochem; 1988 Apr; 50(4):1279-86. PubMed ID: 2450173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prostaglandin induces Ca2+ influx and cyclic GMP formation in mouse neuroblastoma X rat glioma hybrid NG108-15 cells in culture.
    Miwa N; Sugino H; Ueno R; Hayaishi O
    J Neurochem; 1988 May; 50(5):1418-24. PubMed ID: 2834513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of dihydropyridine calcium agonists and antagonists on neuronal voltage sensitive calcium channels.
    Creba JA; Karobath M
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1038-47. PubMed ID: 2418832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma x glioma hybrid NG108-15 cells.
    Jin W; Lee NM; Loh HH; Thayer SA
    Mol Pharmacol; 1992 Dec; 42(6):1083-9. PubMed ID: 1336113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain voltage-sensitive calcium channel subtypes differentiated by omega-conotoxin fraction GVIA.
    Reynolds IJ; Wagner JA; Snyder SH; Thayer SA; Olivera BM; Miller RJ
    Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8804-7. PubMed ID: 2430302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of depolarization stimulated 45Ca2+ uptake in cultured neuronal cells by calcium channel activators and antagonists.
    Creba JA; Karobath M
    Biochem Biophys Res Commun; 1986 Sep; 139(2):581-9. PubMed ID: 2429654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium channel activation: a different type of drug action.
    Freedman SB; Miller RJ
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5580-3. PubMed ID: 6206501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni-coupled receptors in cultured neural hybrid cells: cell specificity for dibutyryl cyclic AMP-induced down-regulation but not morphological differentiation.
    Noronha-Blob L; Lowe VC; Kinnier WJ; U'Prichard DC
    Mol Pharmacol; 1986 Dec; 30(6):526-36. PubMed ID: 3023808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct ATP signaling mechanisms in differentiated neuroblastoma x glioma hybrid NG108-15 cells.
    Chueh SH; Hsu LS; Song SL
    Mol Pharmacol; 1994 Mar; 45(3):532-9. PubMed ID: 7511780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies.
    Shafer TJ; Contreras ML; Atchison WD
    Mol Pharmacol; 1990 Jul; 38(1):102-13. PubMed ID: 2164628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific bindings of [3H](+)PN200-110 and [125I]omega-conotoxin to crude membranes from differentiated NG108-15 cells.
    Ichida S; Wada T; Nakazaki S; Matsuda N; Kishino H; Akimoto T
    Neurochem Res; 1993 May; 18(5):633-8. PubMed ID: 7682662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of calcium channel inhibition by phenytoin: comparison with classical calcium channel antagonists.
    Messing RO; Carpenter CL; Greenberg DA
    J Pharmacol Exp Ther; 1985 Nov; 235(2):407-11. PubMed ID: 2414431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of nicotinic receptor-mediated responses in bovine chromaffin cells by diltiazem.
    Gandía L; Villarroya M; Sala F; Reig JA; Viniegra S; Quintanar JL; García AG; Gutiérrez LM
    Br J Pharmacol; 1996 Jul; 118(5):1301-7. PubMed ID: 8818357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and pharmacological properties of the M-current in rodent neuroblastoma x glioma hybrid cells.
    Robbins J; Trouslard J; Marsh SJ; Brown DA
    J Physiol; 1992; 451():159-85. PubMed ID: 1403809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.